Bounding the Independence Number in Some (n,k,ℓ,λ)-Hypergraphs
Given positive integers k , ℓ and λ such that 2 ⩽ ℓ ⩽ k - 1 , an ( n , k , ℓ , λ ) -hypergraph H is a k -uniform hypergraph on the vertex set [ n ] in which every subset of size ℓ is contained in at most λ edges. The independence number α ( H ) of H is the maximum size of a subset of vertices which...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2018-09, Vol.34 (5), p.845-861 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 861 |
---|---|
container_issue | 5 |
container_start_page | 845 |
container_title | Graphs and combinatorics |
container_volume | 34 |
creator | Tian, Fang Liu, Zi-Long |
description | Given positive integers
k
,
ℓ
and
λ
such that
2
⩽
ℓ
⩽
k
-
1
, an
(
n
,
k
,
ℓ
,
λ
)
-hypergraph
H
is a
k
-uniform hypergraph on the vertex set [
n
] in which every subset of size
ℓ
is contained in at most
λ
edges. The independence number
α
(
H
)
of
H
is the maximum size of a subset of vertices which contains no edges of
H
. Let
f
(
n
,
k
,
ℓ
,
λ
)
=
min
{
α
(
H
)
∣
H
is
an
(
n
,
k
,
ℓ
,
λ
)
-hypergraph
}
. In this paper we show that for any given positive integers
k
⩾
5
,
2
k
+
4
5
<
ℓ
⩽
k
-
2
and
λ
⩽
n
5
ℓ
-
2
k
-
4
3
k
-
9
ω
(
n
)
,
f
(
n
,
k
,
ℓ
,
λ
)
⩾
C
k
,
ℓ
n
λ
log
n
λ
1
ℓ
,
where
ω
(
n
)
→
∞
arbitrarily slowly as
n
→
∞
and
C
k
,
ℓ
is a constant depending only on
k
and
ℓ
. In particular,
C
k
,
ℓ
∼
ℓ
-
1
e
as
k
→
∞
. It generalizes the results from the case
ℓ
=
k
-
1
or
λ
=
1
. An upper bound on
f
(
n
,
k
,
ℓ
,
λ
)
is also obtained for
k
⩾
3
,
2
⩽
ℓ
⩽
k
-
1
and
log
n
≪
λ
≪
n
, by considering a random
k
-uniform hypergraph
H
k
(
n
,
p
)
. |
doi_str_mv | 10.1007/s00373-018-1911-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2093062989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093062989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5bf13bf8824807a27872845b4ffc35c49240230cd5a82e16e6b0e051c351bc173</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqVwAHaR2IBUw4x_EmdZKqCVKlgAaytJnf5AnWAni-y5AcfhDhyCk-AqSKzYzEgz770ZfYScIlwiQHLlAXjCKaCimCLSbo8MUHBJZYpinwxgNwTE9JAceb8BAIkCBmR8XbV2sbbLqFmZaGYXpjah2MJE9-02Ny5a2-ix2pro3I5eRt_vH6Ovzws67Wrjli6rV_6YHJTZqzcnv31Inm9vniZTOn-4m03Gc1pwjBsq8xJ5XirFhIIkY4lKmBIyF2VZcFmIlAlgHIqFzBQzGJs4BxOeDEvMC0z4kJz1ubWr3lrjG72pWmfDSc0g5RCzVKVBhb2qcJX3zpS6dutt5jqNoHekdE9KB1J6R0p3wcN6jw9auzTuL_l_0w8k_Grg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093062989</pqid></control><display><type>article</type><title>Bounding the Independence Number in Some (n,k,ℓ,λ)-Hypergraphs</title><source>Springer Nature - Complete Springer Journals</source><creator>Tian, Fang ; Liu, Zi-Long</creator><creatorcontrib>Tian, Fang ; Liu, Zi-Long</creatorcontrib><description>Given positive integers
k
,
ℓ
and
λ
such that
2
⩽
ℓ
⩽
k
-
1
, an
(
n
,
k
,
ℓ
,
λ
)
-hypergraph
H
is a
k
-uniform hypergraph on the vertex set [
n
] in which every subset of size
ℓ
is contained in at most
λ
edges. The independence number
α
(
H
)
of
H
is the maximum size of a subset of vertices which contains no edges of
H
. Let
f
(
n
,
k
,
ℓ
,
λ
)
=
min
{
α
(
H
)
∣
H
is
an
(
n
,
k
,
ℓ
,
λ
)
-hypergraph
}
. In this paper we show that for any given positive integers
k
⩾
5
,
2
k
+
4
5
<
ℓ
⩽
k
-
2
and
λ
⩽
n
5
ℓ
-
2
k
-
4
3
k
-
9
ω
(
n
)
,
f
(
n
,
k
,
ℓ
,
λ
)
⩾
C
k
,
ℓ
n
λ
log
n
λ
1
ℓ
,
where
ω
(
n
)
→
∞
arbitrarily slowly as
n
→
∞
and
C
k
,
ℓ
is a constant depending only on
k
and
ℓ
. In particular,
C
k
,
ℓ
∼
ℓ
-
1
e
as
k
→
∞
. It generalizes the results from the case
ℓ
=
k
-
1
or
λ
=
1
. An upper bound on
f
(
n
,
k
,
ℓ
,
λ
)
is also obtained for
k
⩾
3
,
2
⩽
ℓ
⩽
k
-
1
and
log
n
≪
λ
≪
n
, by considering a random
k
-uniform hypergraph
H
k
(
n
,
p
)
.</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-018-1911-y</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Combinatorics ; Engineering Design ; Graph theory ; Graphs ; Integers ; Mathematics ; Mathematics and Statistics ; Numbers ; Original Paper ; Upper bounds</subject><ispartof>Graphs and combinatorics, 2018-09, Vol.34 (5), p.845-861</ispartof><rights>Springer Japan KK, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5bf13bf8824807a27872845b4ffc35c49240230cd5a82e16e6b0e051c351bc173</citedby><cites>FETCH-LOGICAL-c316t-5bf13bf8824807a27872845b4ffc35c49240230cd5a82e16e6b0e051c351bc173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00373-018-1911-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00373-018-1911-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Tian, Fang</creatorcontrib><creatorcontrib>Liu, Zi-Long</creatorcontrib><title>Bounding the Independence Number in Some (n,k,ℓ,λ)-Hypergraphs</title><title>Graphs and combinatorics</title><addtitle>Graphs and Combinatorics</addtitle><description>Given positive integers
k
,
ℓ
and
λ
such that
2
⩽
ℓ
⩽
k
-
1
, an
(
n
,
k
,
ℓ
,
λ
)
-hypergraph
H
is a
k
-uniform hypergraph on the vertex set [
n
] in which every subset of size
ℓ
is contained in at most
λ
edges. The independence number
α
(
H
)
of
H
is the maximum size of a subset of vertices which contains no edges of
H
. Let
f
(
n
,
k
,
ℓ
,
λ
)
=
min
{
α
(
H
)
∣
H
is
an
(
n
,
k
,
ℓ
,
λ
)
-hypergraph
}
. In this paper we show that for any given positive integers
k
⩾
5
,
2
k
+
4
5
<
ℓ
⩽
k
-
2
and
λ
⩽
n
5
ℓ
-
2
k
-
4
3
k
-
9
ω
(
n
)
,
f
(
n
,
k
,
ℓ
,
λ
)
⩾
C
k
,
ℓ
n
λ
log
n
λ
1
ℓ
,
where
ω
(
n
)
→
∞
arbitrarily slowly as
n
→
∞
and
C
k
,
ℓ
is a constant depending only on
k
and
ℓ
. In particular,
C
k
,
ℓ
∼
ℓ
-
1
e
as
k
→
∞
. It generalizes the results from the case
ℓ
=
k
-
1
or
λ
=
1
. An upper bound on
f
(
n
,
k
,
ℓ
,
λ
)
is also obtained for
k
⩾
3
,
2
⩽
ℓ
⩽
k
-
1
and
log
n
≪
λ
≪
n
, by considering a random
k
-uniform hypergraph
H
k
(
n
,
p
)
.</description><subject>Combinatorics</subject><subject>Engineering Design</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Integers</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numbers</subject><subject>Original Paper</subject><subject>Upper bounds</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqVwAHaR2IBUw4x_EmdZKqCVKlgAaytJnf5AnWAni-y5AcfhDhyCk-AqSKzYzEgz770ZfYScIlwiQHLlAXjCKaCimCLSbo8MUHBJZYpinwxgNwTE9JAceb8BAIkCBmR8XbV2sbbLqFmZaGYXpjah2MJE9-02Ny5a2-ix2pro3I5eRt_vH6Ovzws67Wrjli6rV_6YHJTZqzcnv31Inm9vniZTOn-4m03Gc1pwjBsq8xJ5XirFhIIkY4lKmBIyF2VZcFmIlAlgHIqFzBQzGJs4BxOeDEvMC0z4kJz1ubWr3lrjG72pWmfDSc0g5RCzVKVBhb2qcJX3zpS6dutt5jqNoHekdE9KB1J6R0p3wcN6jw9auzTuL_l_0w8k_Grg</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Tian, Fang</creator><creator>Liu, Zi-Long</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180901</creationdate><title>Bounding the Independence Number in Some (n,k,ℓ,λ)-Hypergraphs</title><author>Tian, Fang ; Liu, Zi-Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5bf13bf8824807a27872845b4ffc35c49240230cd5a82e16e6b0e051c351bc173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Combinatorics</topic><topic>Engineering Design</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Integers</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numbers</topic><topic>Original Paper</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Fang</creatorcontrib><creatorcontrib>Liu, Zi-Long</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Fang</au><au>Liu, Zi-Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounding the Independence Number in Some (n,k,ℓ,λ)-Hypergraphs</atitle><jtitle>Graphs and combinatorics</jtitle><stitle>Graphs and Combinatorics</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>34</volume><issue>5</issue><spage>845</spage><epage>861</epage><pages>845-861</pages><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>Given positive integers
k
,
ℓ
and
λ
such that
2
⩽
ℓ
⩽
k
-
1
, an
(
n
,
k
,
ℓ
,
λ
)
-hypergraph
H
is a
k
-uniform hypergraph on the vertex set [
n
] in which every subset of size
ℓ
is contained in at most
λ
edges. The independence number
α
(
H
)
of
H
is the maximum size of a subset of vertices which contains no edges of
H
. Let
f
(
n
,
k
,
ℓ
,
λ
)
=
min
{
α
(
H
)
∣
H
is
an
(
n
,
k
,
ℓ
,
λ
)
-hypergraph
}
. In this paper we show that for any given positive integers
k
⩾
5
,
2
k
+
4
5
<
ℓ
⩽
k
-
2
and
λ
⩽
n
5
ℓ
-
2
k
-
4
3
k
-
9
ω
(
n
)
,
f
(
n
,
k
,
ℓ
,
λ
)
⩾
C
k
,
ℓ
n
λ
log
n
λ
1
ℓ
,
where
ω
(
n
)
→
∞
arbitrarily slowly as
n
→
∞
and
C
k
,
ℓ
is a constant depending only on
k
and
ℓ
. In particular,
C
k
,
ℓ
∼
ℓ
-
1
e
as
k
→
∞
. It generalizes the results from the case
ℓ
=
k
-
1
or
λ
=
1
. An upper bound on
f
(
n
,
k
,
ℓ
,
λ
)
is also obtained for
k
⩾
3
,
2
⩽
ℓ
⩽
k
-
1
and
log
n
≪
λ
≪
n
, by considering a random
k
-uniform hypergraph
H
k
(
n
,
p
)
.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s00373-018-1911-y</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0911-0119 |
ispartof | Graphs and combinatorics, 2018-09, Vol.34 (5), p.845-861 |
issn | 0911-0119 1435-5914 |
language | eng |
recordid | cdi_proquest_journals_2093062989 |
source | Springer Nature - Complete Springer Journals |
subjects | Combinatorics Engineering Design Graph theory Graphs Integers Mathematics Mathematics and Statistics Numbers Original Paper Upper bounds |
title | Bounding the Independence Number in Some (n,k,ℓ,λ)-Hypergraphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounding%20the%20Independence%20Number%20in%20Some%20(n,k,%E2%84%93,%CE%BB)-Hypergraphs&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Tian,%20Fang&rft.date=2018-09-01&rft.volume=34&rft.issue=5&rft.spage=845&rft.epage=861&rft.pages=845-861&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-018-1911-y&rft_dat=%3Cproquest_cross%3E2093062989%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2093062989&rft_id=info:pmid/&rfr_iscdi=true |