Structural connectivity and formation mechanism of monometallic cluster fullerenes YCN@Cn (n = 68–84)
Excited by the recently experimental reports of monometallic cluster fullerenes, we examined the electronic and geometrical properties of monometallic cluster fullerenes YCN@Cn with size from C68 to C84 by density functional theory and statistical thermodynamic calculations. The calculations demonst...
Gespeichert in:
Veröffentlicht in: | International journal of quantum chemistry 2018-08, Vol.118 (16), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 16 |
container_start_page | |
container_title | International journal of quantum chemistry |
container_volume | 118 |
creator | Zhao, Wen‐Juan Cao, Ai‐Hua Tian, Jian‐Lei Gan, Li‐Hua |
description | Excited by the recently experimental reports of monometallic cluster fullerenes, we examined the electronic and geometrical properties of monometallic cluster fullerenes YCN@Cn with size from C68 to C84 by density functional theory and statistical thermodynamic calculations. The calculations demonstrate that the thermodynamically favored isomers of YCN@Cn are in good agreement with available experimental results. Morphology analysis shows that the lowest‐energy YCN@Cn species are structurally connected by C2 insertion/extrusion and Stone–Wales rotation, which can be promoted under high temperature; enthalpy–entropy interplay can change the relative abundances of low‐energy isomers significantly at high temperature. All the results suggest that there is a structural evolution among these metallic cluster fullerenes in discharge condition, and thus, can rationalize their structural diversity in the soot and partly disclose their formation mechanism. The geometrical structures, electronic properties of these endohedral fullerene were discussed in detail.
First‐principles calculations can be used to provide insight into the electronic and geometrical properties of monometallic cluster fullerenes. The lowest‐energy YCN@Cn species (n = 68–84) are found to be structurally connected by C2 insertion/extrusion and Stone–Wales rotation, indicating a structural evolution among these metallic cluster fullerenes in discharge condition. |
doi_str_mv | 10.1002/qua.25647 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2092878579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092878579</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2237-c7b15d077f348680de01b9039d8a10fd09ff8fe8e937ec9439e4f4b91b9a51d53</originalsourceid><addsrcrecordid>eNotkMtKAzEUhoMoWKsL3yDgRhfTnswtyUKwFG9QFNGCrkKaSXBqJmkzM0p33br2Dfskjq2LwzlwPv4fPoROCQwIQDxctnIQZ3lK91CPAKdRmpPXfdTrfhDRHNghOqrrOQDkSU576OO5Ca1q2iAtVt45rZrys2xWWLoCGx8q2ZTe4Uqrd-nKusLe4Mo7X-lGWlsqrGxbNzpg01qrg3a6xm_jh6uxw-dus_6-7CZnm_UPSy-O0YGRttYn_7uPpjfXL-O7aPJ4ez8eTaJFHCc0UnRGsgIoNUnKcgaFBjLjkPCCSQKmAG4MM5ppnlCteJpwnZp0xjtIZqTIkj462-Uugl-2um7E3LfBdZUiBh4zyjLKO2q4o75Kq1diEcpKhpUgIP5Eik6k2IoUT9PR9kh-ASw2axs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092878579</pqid></control><display><type>article</type><title>Structural connectivity and formation mechanism of monometallic cluster fullerenes YCN@Cn (n = 68–84)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Wen‐Juan ; Cao, Ai‐Hua ; Tian, Jian‐Lei ; Gan, Li‐Hua</creator><creatorcontrib>Zhao, Wen‐Juan ; Cao, Ai‐Hua ; Tian, Jian‐Lei ; Gan, Li‐Hua</creatorcontrib><description>Excited by the recently experimental reports of monometallic cluster fullerenes, we examined the electronic and geometrical properties of monometallic cluster fullerenes YCN@Cn with size from C68 to C84 by density functional theory and statistical thermodynamic calculations. The calculations demonstrate that the thermodynamically favored isomers of YCN@Cn are in good agreement with available experimental results. Morphology analysis shows that the lowest‐energy YCN@Cn species are structurally connected by C2 insertion/extrusion and Stone–Wales rotation, which can be promoted under high temperature; enthalpy–entropy interplay can change the relative abundances of low‐energy isomers significantly at high temperature. All the results suggest that there is a structural evolution among these metallic cluster fullerenes in discharge condition, and thus, can rationalize their structural diversity in the soot and partly disclose their formation mechanism. The geometrical structures, electronic properties of these endohedral fullerene were discussed in detail.
First‐principles calculations can be used to provide insight into the electronic and geometrical properties of monometallic cluster fullerenes. The lowest‐energy YCN@Cn species (n = 68–84) are found to be structurally connected by C2 insertion/extrusion and Stone–Wales rotation, indicating a structural evolution among these metallic cluster fullerenes in discharge condition.</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.25647</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Chemistry ; Clusters ; Density functional theory ; Enthalpy ; Extrusion ; formation mechanism ; Fullerenes ; High temperature ; Isomers ; Mathematical analysis ; Mathematical morphology ; monometallic cluster fullerenes ; Physical chemistry ; Quantum physics ; Soot ; Stone–Wales rotation ; structural evolution</subject><ispartof>International journal of quantum chemistry, 2018-08, Vol.118 (16), p.n/a</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0084-1147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqua.25647$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqua.25647$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhao, Wen‐Juan</creatorcontrib><creatorcontrib>Cao, Ai‐Hua</creatorcontrib><creatorcontrib>Tian, Jian‐Lei</creatorcontrib><creatorcontrib>Gan, Li‐Hua</creatorcontrib><title>Structural connectivity and formation mechanism of monometallic cluster fullerenes YCN@Cn (n = 68–84)</title><title>International journal of quantum chemistry</title><description>Excited by the recently experimental reports of monometallic cluster fullerenes, we examined the electronic and geometrical properties of monometallic cluster fullerenes YCN@Cn with size from C68 to C84 by density functional theory and statistical thermodynamic calculations. The calculations demonstrate that the thermodynamically favored isomers of YCN@Cn are in good agreement with available experimental results. Morphology analysis shows that the lowest‐energy YCN@Cn species are structurally connected by C2 insertion/extrusion and Stone–Wales rotation, which can be promoted under high temperature; enthalpy–entropy interplay can change the relative abundances of low‐energy isomers significantly at high temperature. All the results suggest that there is a structural evolution among these metallic cluster fullerenes in discharge condition, and thus, can rationalize their structural diversity in the soot and partly disclose their formation mechanism. The geometrical structures, electronic properties of these endohedral fullerene were discussed in detail.
First‐principles calculations can be used to provide insight into the electronic and geometrical properties of monometallic cluster fullerenes. The lowest‐energy YCN@Cn species (n = 68–84) are found to be structurally connected by C2 insertion/extrusion and Stone–Wales rotation, indicating a structural evolution among these metallic cluster fullerenes in discharge condition.</description><subject>Chemistry</subject><subject>Clusters</subject><subject>Density functional theory</subject><subject>Enthalpy</subject><subject>Extrusion</subject><subject>formation mechanism</subject><subject>Fullerenes</subject><subject>High temperature</subject><subject>Isomers</subject><subject>Mathematical analysis</subject><subject>Mathematical morphology</subject><subject>monometallic cluster fullerenes</subject><subject>Physical chemistry</subject><subject>Quantum physics</subject><subject>Soot</subject><subject>Stone–Wales rotation</subject><subject>structural evolution</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkMtKAzEUhoMoWKsL3yDgRhfTnswtyUKwFG9QFNGCrkKaSXBqJmkzM0p33br2Dfskjq2LwzlwPv4fPoROCQwIQDxctnIQZ3lK91CPAKdRmpPXfdTrfhDRHNghOqrrOQDkSU576OO5Ca1q2iAtVt45rZrys2xWWLoCGx8q2ZTe4Uqrd-nKusLe4Mo7X-lGWlsqrGxbNzpg01qrg3a6xm_jh6uxw-dus_6-7CZnm_UPSy-O0YGRttYn_7uPpjfXL-O7aPJ4ez8eTaJFHCc0UnRGsgIoNUnKcgaFBjLjkPCCSQKmAG4MM5ppnlCteJpwnZp0xjtIZqTIkj462-Uugl-2um7E3LfBdZUiBh4zyjLKO2q4o75Kq1diEcpKhpUgIP5Eik6k2IoUT9PR9kh-ASw2axs</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Zhao, Wen‐Juan</creator><creator>Cao, Ai‐Hua</creator><creator>Tian, Jian‐Lei</creator><creator>Gan, Li‐Hua</creator><general>Wiley Subscription Services, Inc</general><scope/><orcidid>https://orcid.org/0000-0002-0084-1147</orcidid></search><sort><creationdate>20180815</creationdate><title>Structural connectivity and formation mechanism of monometallic cluster fullerenes YCN@Cn (n = 68–84)</title><author>Zhao, Wen‐Juan ; Cao, Ai‐Hua ; Tian, Jian‐Lei ; Gan, Li‐Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2237-c7b15d077f348680de01b9039d8a10fd09ff8fe8e937ec9439e4f4b91b9a51d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemistry</topic><topic>Clusters</topic><topic>Density functional theory</topic><topic>Enthalpy</topic><topic>Extrusion</topic><topic>formation mechanism</topic><topic>Fullerenes</topic><topic>High temperature</topic><topic>Isomers</topic><topic>Mathematical analysis</topic><topic>Mathematical morphology</topic><topic>monometallic cluster fullerenes</topic><topic>Physical chemistry</topic><topic>Quantum physics</topic><topic>Soot</topic><topic>Stone–Wales rotation</topic><topic>structural evolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Wen‐Juan</creatorcontrib><creatorcontrib>Cao, Ai‐Hua</creatorcontrib><creatorcontrib>Tian, Jian‐Lei</creatorcontrib><creatorcontrib>Gan, Li‐Hua</creatorcontrib><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Wen‐Juan</au><au>Cao, Ai‐Hua</au><au>Tian, Jian‐Lei</au><au>Gan, Li‐Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural connectivity and formation mechanism of monometallic cluster fullerenes YCN@Cn (n = 68–84)</atitle><jtitle>International journal of quantum chemistry</jtitle><date>2018-08-15</date><risdate>2018</risdate><volume>118</volume><issue>16</issue><epage>n/a</epage><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>Excited by the recently experimental reports of monometallic cluster fullerenes, we examined the electronic and geometrical properties of monometallic cluster fullerenes YCN@Cn with size from C68 to C84 by density functional theory and statistical thermodynamic calculations. The calculations demonstrate that the thermodynamically favored isomers of YCN@Cn are in good agreement with available experimental results. Morphology analysis shows that the lowest‐energy YCN@Cn species are structurally connected by C2 insertion/extrusion and Stone–Wales rotation, which can be promoted under high temperature; enthalpy–entropy interplay can change the relative abundances of low‐energy isomers significantly at high temperature. All the results suggest that there is a structural evolution among these metallic cluster fullerenes in discharge condition, and thus, can rationalize their structural diversity in the soot and partly disclose their formation mechanism. The geometrical structures, electronic properties of these endohedral fullerene were discussed in detail.
First‐principles calculations can be used to provide insight into the electronic and geometrical properties of monometallic cluster fullerenes. The lowest‐energy YCN@Cn species (n = 68–84) are found to be structurally connected by C2 insertion/extrusion and Stone–Wales rotation, indicating a structural evolution among these metallic cluster fullerenes in discharge condition.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qua.25647</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0084-1147</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7608 |
ispartof | International journal of quantum chemistry, 2018-08, Vol.118 (16), p.n/a |
issn | 0020-7608 1097-461X |
language | eng |
recordid | cdi_proquest_journals_2092878579 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Chemistry Clusters Density functional theory Enthalpy Extrusion formation mechanism Fullerenes High temperature Isomers Mathematical analysis Mathematical morphology monometallic cluster fullerenes Physical chemistry Quantum physics Soot Stone–Wales rotation structural evolution |
title | Structural connectivity and formation mechanism of monometallic cluster fullerenes YCN@Cn (n = 68–84) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20connectivity%20and%20formation%20mechanism%20of%20monometallic%20cluster%20fullerenes%20YCN@Cn%20(n%E2%80%89=%E2%80%8968%E2%80%9384)&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Zhao,%20Wen%E2%80%90Juan&rft.date=2018-08-15&rft.volume=118&rft.issue=16&rft.epage=n/a&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.25647&rft_dat=%3Cproquest_wiley%3E2092878579%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092878579&rft_id=info:pmid/&rfr_iscdi=true |