Structural connectivity and formation mechanism of monometallic cluster fullerenes YCN@Cn (n = 68–84)

Excited by the recently experimental reports of monometallic cluster fullerenes, we examined the electronic and geometrical properties of monometallic cluster fullerenes YCN@Cn with size from C68 to C84 by density functional theory and statistical thermodynamic calculations. The calculations demonst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of quantum chemistry 2018-08, Vol.118 (16), p.n/a
Hauptverfasser: Zhao, Wen‐Juan, Cao, Ai‐Hua, Tian, Jian‐Lei, Gan, Li‐Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page
container_title International journal of quantum chemistry
container_volume 118
creator Zhao, Wen‐Juan
Cao, Ai‐Hua
Tian, Jian‐Lei
Gan, Li‐Hua
description Excited by the recently experimental reports of monometallic cluster fullerenes, we examined the electronic and geometrical properties of monometallic cluster fullerenes YCN@Cn with size from C68 to C84 by density functional theory and statistical thermodynamic calculations. The calculations demonstrate that the thermodynamically favored isomers of YCN@Cn are in good agreement with available experimental results. Morphology analysis shows that the lowest‐energy YCN@Cn species are structurally connected by C2 insertion/extrusion and Stone–Wales rotation, which can be promoted under high temperature; enthalpy–entropy interplay can change the relative abundances of low‐energy isomers significantly at high temperature. All the results suggest that there is a structural evolution among these metallic cluster fullerenes in discharge condition, and thus, can rationalize their structural diversity in the soot and partly disclose their formation mechanism. The geometrical structures, electronic properties of these endohedral fullerene were discussed in detail. First‐principles calculations can be used to provide insight into the electronic and geometrical properties of monometallic cluster fullerenes. The lowest‐energy YCN@Cn species (n = 68–84) are found to be structurally connected by C2 insertion/extrusion and Stone–Wales rotation, indicating a structural evolution among these metallic cluster fullerenes in discharge condition.
doi_str_mv 10.1002/qua.25647
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2092878579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092878579</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2237-c7b15d077f348680de01b9039d8a10fd09ff8fe8e937ec9439e4f4b91b9a51d53</originalsourceid><addsrcrecordid>eNotkMtKAzEUhoMoWKsL3yDgRhfTnswtyUKwFG9QFNGCrkKaSXBqJmkzM0p33br2Dfskjq2LwzlwPv4fPoROCQwIQDxctnIQZ3lK91CPAKdRmpPXfdTrfhDRHNghOqrrOQDkSU576OO5Ca1q2iAtVt45rZrys2xWWLoCGx8q2ZTe4Uqrd-nKusLe4Mo7X-lGWlsqrGxbNzpg01qrg3a6xm_jh6uxw-dus_6-7CZnm_UPSy-O0YGRttYn_7uPpjfXL-O7aPJ4ez8eTaJFHCc0UnRGsgIoNUnKcgaFBjLjkPCCSQKmAG4MM5ppnlCteJpwnZp0xjtIZqTIkj462-Uugl-2um7E3LfBdZUiBh4zyjLKO2q4o75Kq1diEcpKhpUgIP5Eik6k2IoUT9PR9kh-ASw2axs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092878579</pqid></control><display><type>article</type><title>Structural connectivity and formation mechanism of monometallic cluster fullerenes YCN@Cn (n = 68–84)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Wen‐Juan ; Cao, Ai‐Hua ; Tian, Jian‐Lei ; Gan, Li‐Hua</creator><creatorcontrib>Zhao, Wen‐Juan ; Cao, Ai‐Hua ; Tian, Jian‐Lei ; Gan, Li‐Hua</creatorcontrib><description>Excited by the recently experimental reports of monometallic cluster fullerenes, we examined the electronic and geometrical properties of monometallic cluster fullerenes YCN@Cn with size from C68 to C84 by density functional theory and statistical thermodynamic calculations. The calculations demonstrate that the thermodynamically favored isomers of YCN@Cn are in good agreement with available experimental results. Morphology analysis shows that the lowest‐energy YCN@Cn species are structurally connected by C2 insertion/extrusion and Stone–Wales rotation, which can be promoted under high temperature; enthalpy–entropy interplay can change the relative abundances of low‐energy isomers significantly at high temperature. All the results suggest that there is a structural evolution among these metallic cluster fullerenes in discharge condition, and thus, can rationalize their structural diversity in the soot and partly disclose their formation mechanism. The geometrical structures, electronic properties of these endohedral fullerene were discussed in detail. First‐principles calculations can be used to provide insight into the electronic and geometrical properties of monometallic cluster fullerenes. The lowest‐energy YCN@Cn species (n = 68–84) are found to be structurally connected by C2 insertion/extrusion and Stone–Wales rotation, indicating a structural evolution among these metallic cluster fullerenes in discharge condition.</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.25647</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Chemistry ; Clusters ; Density functional theory ; Enthalpy ; Extrusion ; formation mechanism ; Fullerenes ; High temperature ; Isomers ; Mathematical analysis ; Mathematical morphology ; monometallic cluster fullerenes ; Physical chemistry ; Quantum physics ; Soot ; Stone–Wales rotation ; structural evolution</subject><ispartof>International journal of quantum chemistry, 2018-08, Vol.118 (16), p.n/a</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0084-1147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqua.25647$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqua.25647$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhao, Wen‐Juan</creatorcontrib><creatorcontrib>Cao, Ai‐Hua</creatorcontrib><creatorcontrib>Tian, Jian‐Lei</creatorcontrib><creatorcontrib>Gan, Li‐Hua</creatorcontrib><title>Structural connectivity and formation mechanism of monometallic cluster fullerenes YCN@Cn (n = 68–84)</title><title>International journal of quantum chemistry</title><description>Excited by the recently experimental reports of monometallic cluster fullerenes, we examined the electronic and geometrical properties of monometallic cluster fullerenes YCN@Cn with size from C68 to C84 by density functional theory and statistical thermodynamic calculations. The calculations demonstrate that the thermodynamically favored isomers of YCN@Cn are in good agreement with available experimental results. Morphology analysis shows that the lowest‐energy YCN@Cn species are structurally connected by C2 insertion/extrusion and Stone–Wales rotation, which can be promoted under high temperature; enthalpy–entropy interplay can change the relative abundances of low‐energy isomers significantly at high temperature. All the results suggest that there is a structural evolution among these metallic cluster fullerenes in discharge condition, and thus, can rationalize their structural diversity in the soot and partly disclose their formation mechanism. The geometrical structures, electronic properties of these endohedral fullerene were discussed in detail. First‐principles calculations can be used to provide insight into the electronic and geometrical properties of monometallic cluster fullerenes. The lowest‐energy YCN@Cn species (n = 68–84) are found to be structurally connected by C2 insertion/extrusion and Stone–Wales rotation, indicating a structural evolution among these metallic cluster fullerenes in discharge condition.</description><subject>Chemistry</subject><subject>Clusters</subject><subject>Density functional theory</subject><subject>Enthalpy</subject><subject>Extrusion</subject><subject>formation mechanism</subject><subject>Fullerenes</subject><subject>High temperature</subject><subject>Isomers</subject><subject>Mathematical analysis</subject><subject>Mathematical morphology</subject><subject>monometallic cluster fullerenes</subject><subject>Physical chemistry</subject><subject>Quantum physics</subject><subject>Soot</subject><subject>Stone–Wales rotation</subject><subject>structural evolution</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkMtKAzEUhoMoWKsL3yDgRhfTnswtyUKwFG9QFNGCrkKaSXBqJmkzM0p33br2Dfskjq2LwzlwPv4fPoROCQwIQDxctnIQZ3lK91CPAKdRmpPXfdTrfhDRHNghOqrrOQDkSU576OO5Ca1q2iAtVt45rZrys2xWWLoCGx8q2ZTe4Uqrd-nKusLe4Mo7X-lGWlsqrGxbNzpg01qrg3a6xm_jh6uxw-dus_6-7CZnm_UPSy-O0YGRttYn_7uPpjfXL-O7aPJ4ez8eTaJFHCc0UnRGsgIoNUnKcgaFBjLjkPCCSQKmAG4MM5ppnlCteJpwnZp0xjtIZqTIkj462-Uugl-2um7E3LfBdZUiBh4zyjLKO2q4o75Kq1diEcpKhpUgIP5Eik6k2IoUT9PR9kh-ASw2axs</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Zhao, Wen‐Juan</creator><creator>Cao, Ai‐Hua</creator><creator>Tian, Jian‐Lei</creator><creator>Gan, Li‐Hua</creator><general>Wiley Subscription Services, Inc</general><scope/><orcidid>https://orcid.org/0000-0002-0084-1147</orcidid></search><sort><creationdate>20180815</creationdate><title>Structural connectivity and formation mechanism of monometallic cluster fullerenes YCN@Cn (n = 68–84)</title><author>Zhao, Wen‐Juan ; Cao, Ai‐Hua ; Tian, Jian‐Lei ; Gan, Li‐Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2237-c7b15d077f348680de01b9039d8a10fd09ff8fe8e937ec9439e4f4b91b9a51d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemistry</topic><topic>Clusters</topic><topic>Density functional theory</topic><topic>Enthalpy</topic><topic>Extrusion</topic><topic>formation mechanism</topic><topic>Fullerenes</topic><topic>High temperature</topic><topic>Isomers</topic><topic>Mathematical analysis</topic><topic>Mathematical morphology</topic><topic>monometallic cluster fullerenes</topic><topic>Physical chemistry</topic><topic>Quantum physics</topic><topic>Soot</topic><topic>Stone–Wales rotation</topic><topic>structural evolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Wen‐Juan</creatorcontrib><creatorcontrib>Cao, Ai‐Hua</creatorcontrib><creatorcontrib>Tian, Jian‐Lei</creatorcontrib><creatorcontrib>Gan, Li‐Hua</creatorcontrib><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Wen‐Juan</au><au>Cao, Ai‐Hua</au><au>Tian, Jian‐Lei</au><au>Gan, Li‐Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural connectivity and formation mechanism of monometallic cluster fullerenes YCN@Cn (n = 68–84)</atitle><jtitle>International journal of quantum chemistry</jtitle><date>2018-08-15</date><risdate>2018</risdate><volume>118</volume><issue>16</issue><epage>n/a</epage><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>Excited by the recently experimental reports of monometallic cluster fullerenes, we examined the electronic and geometrical properties of monometallic cluster fullerenes YCN@Cn with size from C68 to C84 by density functional theory and statistical thermodynamic calculations. The calculations demonstrate that the thermodynamically favored isomers of YCN@Cn are in good agreement with available experimental results. Morphology analysis shows that the lowest‐energy YCN@Cn species are structurally connected by C2 insertion/extrusion and Stone–Wales rotation, which can be promoted under high temperature; enthalpy–entropy interplay can change the relative abundances of low‐energy isomers significantly at high temperature. All the results suggest that there is a structural evolution among these metallic cluster fullerenes in discharge condition, and thus, can rationalize their structural diversity in the soot and partly disclose their formation mechanism. The geometrical structures, electronic properties of these endohedral fullerene were discussed in detail. First‐principles calculations can be used to provide insight into the electronic and geometrical properties of monometallic cluster fullerenes. The lowest‐energy YCN@Cn species (n = 68–84) are found to be structurally connected by C2 insertion/extrusion and Stone–Wales rotation, indicating a structural evolution among these metallic cluster fullerenes in discharge condition.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qua.25647</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0084-1147</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7608
ispartof International journal of quantum chemistry, 2018-08, Vol.118 (16), p.n/a
issn 0020-7608
1097-461X
language eng
recordid cdi_proquest_journals_2092878579
source Wiley Online Library Journals Frontfile Complete
subjects Chemistry
Clusters
Density functional theory
Enthalpy
Extrusion
formation mechanism
Fullerenes
High temperature
Isomers
Mathematical analysis
Mathematical morphology
monometallic cluster fullerenes
Physical chemistry
Quantum physics
Soot
Stone–Wales rotation
structural evolution
title Structural connectivity and formation mechanism of monometallic cluster fullerenes YCN@Cn (n = 68–84)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20connectivity%20and%20formation%20mechanism%20of%20monometallic%20cluster%20fullerenes%20YCN@Cn%20(n%E2%80%89=%E2%80%8968%E2%80%9384)&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Zhao,%20Wen%E2%80%90Juan&rft.date=2018-08-15&rft.volume=118&rft.issue=16&rft.epage=n/a&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.25647&rft_dat=%3Cproquest_wiley%3E2092878579%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092878579&rft_id=info:pmid/&rfr_iscdi=true