Generalized Radon--Nikodym Spectral Approach. Application to Relaxation Dynamics Study

Radon--Nikodym approach to relaxation dynamics, where probability density is built first and then used to calculate observable dynamic characteristic is developed and applied to relaxation type signals study. In contrast with \(L^2\) norm approaches, such as Fourier or least squares, this new approa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-07
Hauptverfasser: Bobyl, Aleksandr Vasilievich, Zabrodskii, Andrei Georgievich, Kompan, Mikhail Evgenievich, Vladislav Gennadievich Malyshkin, Novikova, Olga Valentinovna, Terukova, Ekaterina Evgenievna, Agafonov, Dmitry Valentinovich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bobyl, Aleksandr Vasilievich
Zabrodskii, Andrei Georgievich
Kompan, Mikhail Evgenievich
Vladislav Gennadievich Malyshkin
Novikova, Olga Valentinovna
Terukova, Ekaterina Evgenievna
Agafonov, Dmitry Valentinovich
description Radon--Nikodym approach to relaxation dynamics, where probability density is built first and then used to calculate observable dynamic characteristic is developed and applied to relaxation type signals study. In contrast with \(L^2\) norm approaches, such as Fourier or least squares, this new approach does not use a norm, the problem is reduced to finding the spectrum of an operator (virtual Hamiltonian), which is built in a way that eigenvalues represent the dynamic characteristic of interest and eigenvectors represent probability density. The problems of interpolation (numerical estimation of Radon--Nikodym derivatives is developed) and obtaining the distribution of relaxation rates from sampled timeserie are considered. Application of the theory is demonstrated on a number of model and experimentally measured timeserie signals of degradation and relaxation processes. Software product, implementing the theory is developed.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2092826786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092826786</sourcerecordid><originalsourceid>FETCH-proquest_journals_20928267863</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQIc0_NSy1KzMmsSk1RCEpMyc_T1fXLzM5PqcxVCC5ITS4Byik4FhQU5ScmZ-iBWDmZyYklmfl5CiX5CkGpOYkVEJ5LZV5ibmZysUJwSWlKJQ8Da1piTnEqL5TmZlB2cw1x9tAFGlRYmlpcEp-VX1qUB5SKNzKwNLIAusfCzJg4VQD41kEr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092826786</pqid></control><display><type>article</type><title>Generalized Radon--Nikodym Spectral Approach. Application to Relaxation Dynamics Study</title><source>Freely Accessible Journals</source><creator>Bobyl, Aleksandr Vasilievich ; Zabrodskii, Andrei Georgievich ; Kompan, Mikhail Evgenievich ; Vladislav Gennadievich Malyshkin ; Novikova, Olga Valentinovna ; Terukova, Ekaterina Evgenievna ; Agafonov, Dmitry Valentinovich</creator><creatorcontrib>Bobyl, Aleksandr Vasilievich ; Zabrodskii, Andrei Georgievich ; Kompan, Mikhail Evgenievich ; Vladislav Gennadievich Malyshkin ; Novikova, Olga Valentinovna ; Terukova, Ekaterina Evgenievna ; Agafonov, Dmitry Valentinovich</creatorcontrib><description>Radon--Nikodym approach to relaxation dynamics, where probability density is built first and then used to calculate observable dynamic characteristic is developed and applied to relaxation type signals study. In contrast with \(L^2\) norm approaches, such as Fourier or least squares, this new approach does not use a norm, the problem is reduced to finding the spectrum of an operator (virtual Hamiltonian), which is built in a way that eigenvalues represent the dynamic characteristic of interest and eigenvectors represent probability density. The problems of interpolation (numerical estimation of Radon--Nikodym derivatives is developed) and obtaining the distribution of relaxation rates from sampled timeserie are considered. Application of the theory is demonstrated on a number of model and experimentally measured timeserie signals of degradation and relaxation processes. Software product, implementing the theory is developed.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Density ; Eigenvalues ; Eigenvectors ; Interpolation ; Mathematical analysis ; Mathematical models ; Radon ; Signal processing</subject><ispartof>arXiv.org, 2018-07</ispartof><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Bobyl, Aleksandr Vasilievich</creatorcontrib><creatorcontrib>Zabrodskii, Andrei Georgievich</creatorcontrib><creatorcontrib>Kompan, Mikhail Evgenievich</creatorcontrib><creatorcontrib>Vladislav Gennadievich Malyshkin</creatorcontrib><creatorcontrib>Novikova, Olga Valentinovna</creatorcontrib><creatorcontrib>Terukova, Ekaterina Evgenievna</creatorcontrib><creatorcontrib>Agafonov, Dmitry Valentinovich</creatorcontrib><title>Generalized Radon--Nikodym Spectral Approach. Application to Relaxation Dynamics Study</title><title>arXiv.org</title><description>Radon--Nikodym approach to relaxation dynamics, where probability density is built first and then used to calculate observable dynamic characteristic is developed and applied to relaxation type signals study. In contrast with \(L^2\) norm approaches, such as Fourier or least squares, this new approach does not use a norm, the problem is reduced to finding the spectrum of an operator (virtual Hamiltonian), which is built in a way that eigenvalues represent the dynamic characteristic of interest and eigenvectors represent probability density. The problems of interpolation (numerical estimation of Radon--Nikodym derivatives is developed) and obtaining the distribution of relaxation rates from sampled timeserie are considered. Application of the theory is demonstrated on a number of model and experimentally measured timeserie signals of degradation and relaxation processes. Software product, implementing the theory is developed.</description><subject>Density</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Radon</subject><subject>Signal processing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQIc0_NSy1KzMmsSk1RCEpMyc_T1fXLzM5PqcxVCC5ITS4Byik4FhQU5ScmZ-iBWDmZyYklmfl5CiX5CkGpOYkVEJ5LZV5ibmZysUJwSWlKJQ8Da1piTnEqL5TmZlB2cw1x9tAFGlRYmlpcEp-VX1qUB5SKNzKwNLIAusfCzJg4VQD41kEr</recordid><startdate>20180718</startdate><enddate>20180718</enddate><creator>Bobyl, Aleksandr Vasilievich</creator><creator>Zabrodskii, Andrei Georgievich</creator><creator>Kompan, Mikhail Evgenievich</creator><creator>Vladislav Gennadievich Malyshkin</creator><creator>Novikova, Olga Valentinovna</creator><creator>Terukova, Ekaterina Evgenievna</creator><creator>Agafonov, Dmitry Valentinovich</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180718</creationdate><title>Generalized Radon--Nikodym Spectral Approach. Application to Relaxation Dynamics Study</title><author>Bobyl, Aleksandr Vasilievich ; Zabrodskii, Andrei Georgievich ; Kompan, Mikhail Evgenievich ; Vladislav Gennadievich Malyshkin ; Novikova, Olga Valentinovna ; Terukova, Ekaterina Evgenievna ; Agafonov, Dmitry Valentinovich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20928267863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Density</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Radon</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Bobyl, Aleksandr Vasilievich</creatorcontrib><creatorcontrib>Zabrodskii, Andrei Georgievich</creatorcontrib><creatorcontrib>Kompan, Mikhail Evgenievich</creatorcontrib><creatorcontrib>Vladislav Gennadievich Malyshkin</creatorcontrib><creatorcontrib>Novikova, Olga Valentinovna</creatorcontrib><creatorcontrib>Terukova, Ekaterina Evgenievna</creatorcontrib><creatorcontrib>Agafonov, Dmitry Valentinovich</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bobyl, Aleksandr Vasilievich</au><au>Zabrodskii, Andrei Georgievich</au><au>Kompan, Mikhail Evgenievich</au><au>Vladislav Gennadievich Malyshkin</au><au>Novikova, Olga Valentinovna</au><au>Terukova, Ekaterina Evgenievna</au><au>Agafonov, Dmitry Valentinovich</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Generalized Radon--Nikodym Spectral Approach. Application to Relaxation Dynamics Study</atitle><jtitle>arXiv.org</jtitle><date>2018-07-18</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Radon--Nikodym approach to relaxation dynamics, where probability density is built first and then used to calculate observable dynamic characteristic is developed and applied to relaxation type signals study. In contrast with \(L^2\) norm approaches, such as Fourier or least squares, this new approach does not use a norm, the problem is reduced to finding the spectrum of an operator (virtual Hamiltonian), which is built in a way that eigenvalues represent the dynamic characteristic of interest and eigenvectors represent probability density. The problems of interpolation (numerical estimation of Radon--Nikodym derivatives is developed) and obtaining the distribution of relaxation rates from sampled timeserie are considered. Application of the theory is demonstrated on a number of model and experimentally measured timeserie signals of degradation and relaxation processes. Software product, implementing the theory is developed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2092826786
source Freely Accessible Journals
subjects Density
Eigenvalues
Eigenvectors
Interpolation
Mathematical analysis
Mathematical models
Radon
Signal processing
title Generalized Radon--Nikodym Spectral Approach. Application to Relaxation Dynamics Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Generalized%20Radon--Nikodym%20Spectral%20Approach.%20Application%20to%20Relaxation%20Dynamics%20Study&rft.jtitle=arXiv.org&rft.au=Bobyl,%20Aleksandr%20Vasilievich&rft.date=2018-07-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2092826786%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092826786&rft_id=info:pmid/&rfr_iscdi=true