Data Science with Vadalog: Bridging Machine Learning and Reasoning

Following the recent successful examples of large technology companies, many modern enterprises seek to build knowledge graphs to provide a unified view of corporate knowledge and to draw deep insights using machine learning and logical reasoning. There is currently a perceived disconnect between th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-07
Hauptverfasser: Bellomarini, Luigi, Fayzrakhmanov, Ruslan R, Gottlob, Georg, Kravchenko, Andrey, Laurenza, Eleonora, Nenov, Yavor, Reissfelder, Stephane, Sallinger, Emanuel, Sherkhonov, Evgeny, Wu, Lianlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bellomarini, Luigi
Fayzrakhmanov, Ruslan R
Gottlob, Georg
Kravchenko, Andrey
Laurenza, Eleonora
Nenov, Yavor
Reissfelder, Stephane
Sallinger, Emanuel
Sherkhonov, Evgeny
Wu, Lianlong
description Following the recent successful examples of large technology companies, many modern enterprises seek to build knowledge graphs to provide a unified view of corporate knowledge and to draw deep insights using machine learning and logical reasoning. There is currently a perceived disconnect between the traditional approaches for data science, typically based on machine learning and statistical modelling, and systems for reasoning with domain knowledge. In this paper we present a state-of-the-art Knowledge Graph Management System, Vadalog, which delivers highly expressive and efficient logical reasoning and provides seamless integration with modern data science toolkits, such as the Jupyter platform. We demonstrate how to use Vadalog to perform traditional data wrangling tasks, as well as complex logical and probabilistic reasoning. We argue that this is a significant step forward towards combining machine learning and reasoning in data science.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2092799700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092799700</sourcerecordid><originalsourceid>FETCH-proquest_journals_20927997003</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwckksSVQITs5MzUtOVSjPLMlQCEtMSczJT7dScCrKTEnPzEtX8E1MzsjMS1XwSU0sygMJJOalKASlJhbng3g8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGBpZG5paW5gYEycKgA-4Djt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092799700</pqid></control><display><type>article</type><title>Data Science with Vadalog: Bridging Machine Learning and Reasoning</title><source>Free E- Journals</source><creator>Bellomarini, Luigi ; Fayzrakhmanov, Ruslan R ; Gottlob, Georg ; Kravchenko, Andrey ; Laurenza, Eleonora ; Nenov, Yavor ; Reissfelder, Stephane ; Sallinger, Emanuel ; Sherkhonov, Evgeny ; Wu, Lianlong</creator><creatorcontrib>Bellomarini, Luigi ; Fayzrakhmanov, Ruslan R ; Gottlob, Georg ; Kravchenko, Andrey ; Laurenza, Eleonora ; Nenov, Yavor ; Reissfelder, Stephane ; Sallinger, Emanuel ; Sherkhonov, Evgeny ; Wu, Lianlong</creatorcontrib><description>Following the recent successful examples of large technology companies, many modern enterprises seek to build knowledge graphs to provide a unified view of corporate knowledge and to draw deep insights using machine learning and logical reasoning. There is currently a perceived disconnect between the traditional approaches for data science, typically based on machine learning and statistical modelling, and systems for reasoning with domain knowledge. In this paper we present a state-of-the-art Knowledge Graph Management System, Vadalog, which delivers highly expressive and efficient logical reasoning and provides seamless integration with modern data science toolkits, such as the Jupyter platform. We demonstrate how to use Vadalog to perform traditional data wrangling tasks, as well as complex logical and probabilistic reasoning. We argue that this is a significant step forward towards combining machine learning and reasoning in data science.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Cognition &amp; reasoning ; Data science ; Machine learning ; Reasoning ; State of the art ; Statistical analysis ; Statistical models ; Task complexity ; Toolkits</subject><ispartof>arXiv.org, 2018-07</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bellomarini, Luigi</creatorcontrib><creatorcontrib>Fayzrakhmanov, Ruslan R</creatorcontrib><creatorcontrib>Gottlob, Georg</creatorcontrib><creatorcontrib>Kravchenko, Andrey</creatorcontrib><creatorcontrib>Laurenza, Eleonora</creatorcontrib><creatorcontrib>Nenov, Yavor</creatorcontrib><creatorcontrib>Reissfelder, Stephane</creatorcontrib><creatorcontrib>Sallinger, Emanuel</creatorcontrib><creatorcontrib>Sherkhonov, Evgeny</creatorcontrib><creatorcontrib>Wu, Lianlong</creatorcontrib><title>Data Science with Vadalog: Bridging Machine Learning and Reasoning</title><title>arXiv.org</title><description>Following the recent successful examples of large technology companies, many modern enterprises seek to build knowledge graphs to provide a unified view of corporate knowledge and to draw deep insights using machine learning and logical reasoning. There is currently a perceived disconnect between the traditional approaches for data science, typically based on machine learning and statistical modelling, and systems for reasoning with domain knowledge. In this paper we present a state-of-the-art Knowledge Graph Management System, Vadalog, which delivers highly expressive and efficient logical reasoning and provides seamless integration with modern data science toolkits, such as the Jupyter platform. We demonstrate how to use Vadalog to perform traditional data wrangling tasks, as well as complex logical and probabilistic reasoning. We argue that this is a significant step forward towards combining machine learning and reasoning in data science.</description><subject>Artificial intelligence</subject><subject>Cognition &amp; reasoning</subject><subject>Data science</subject><subject>Machine learning</subject><subject>Reasoning</subject><subject>State of the art</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Task complexity</subject><subject>Toolkits</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwckksSVQITs5MzUtOVSjPLMlQCEtMSczJT7dScCrKTEnPzEtX8E1MzsjMS1XwSU0sygMJJOalKASlJhbng3g8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGBpZG5paW5gYEycKgA-4Djt</recordid><startdate>20180723</startdate><enddate>20180723</enddate><creator>Bellomarini, Luigi</creator><creator>Fayzrakhmanov, Ruslan R</creator><creator>Gottlob, Georg</creator><creator>Kravchenko, Andrey</creator><creator>Laurenza, Eleonora</creator><creator>Nenov, Yavor</creator><creator>Reissfelder, Stephane</creator><creator>Sallinger, Emanuel</creator><creator>Sherkhonov, Evgeny</creator><creator>Wu, Lianlong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180723</creationdate><title>Data Science with Vadalog: Bridging Machine Learning and Reasoning</title><author>Bellomarini, Luigi ; Fayzrakhmanov, Ruslan R ; Gottlob, Georg ; Kravchenko, Andrey ; Laurenza, Eleonora ; Nenov, Yavor ; Reissfelder, Stephane ; Sallinger, Emanuel ; Sherkhonov, Evgeny ; Wu, Lianlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20927997003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Cognition &amp; reasoning</topic><topic>Data science</topic><topic>Machine learning</topic><topic>Reasoning</topic><topic>State of the art</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Task complexity</topic><topic>Toolkits</topic><toplevel>online_resources</toplevel><creatorcontrib>Bellomarini, Luigi</creatorcontrib><creatorcontrib>Fayzrakhmanov, Ruslan R</creatorcontrib><creatorcontrib>Gottlob, Georg</creatorcontrib><creatorcontrib>Kravchenko, Andrey</creatorcontrib><creatorcontrib>Laurenza, Eleonora</creatorcontrib><creatorcontrib>Nenov, Yavor</creatorcontrib><creatorcontrib>Reissfelder, Stephane</creatorcontrib><creatorcontrib>Sallinger, Emanuel</creatorcontrib><creatorcontrib>Sherkhonov, Evgeny</creatorcontrib><creatorcontrib>Wu, Lianlong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellomarini, Luigi</au><au>Fayzrakhmanov, Ruslan R</au><au>Gottlob, Georg</au><au>Kravchenko, Andrey</au><au>Laurenza, Eleonora</au><au>Nenov, Yavor</au><au>Reissfelder, Stephane</au><au>Sallinger, Emanuel</au><au>Sherkhonov, Evgeny</au><au>Wu, Lianlong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Data Science with Vadalog: Bridging Machine Learning and Reasoning</atitle><jtitle>arXiv.org</jtitle><date>2018-07-23</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Following the recent successful examples of large technology companies, many modern enterprises seek to build knowledge graphs to provide a unified view of corporate knowledge and to draw deep insights using machine learning and logical reasoning. There is currently a perceived disconnect between the traditional approaches for data science, typically based on machine learning and statistical modelling, and systems for reasoning with domain knowledge. In this paper we present a state-of-the-art Knowledge Graph Management System, Vadalog, which delivers highly expressive and efficient logical reasoning and provides seamless integration with modern data science toolkits, such as the Jupyter platform. We demonstrate how to use Vadalog to perform traditional data wrangling tasks, as well as complex logical and probabilistic reasoning. We argue that this is a significant step forward towards combining machine learning and reasoning in data science.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2092799700
source Free E- Journals
subjects Artificial intelligence
Cognition & reasoning
Data science
Machine learning
Reasoning
State of the art
Statistical analysis
Statistical models
Task complexity
Toolkits
title Data Science with Vadalog: Bridging Machine Learning and Reasoning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Data%20Science%20with%20Vadalog:%20Bridging%20Machine%20Learning%20and%20Reasoning&rft.jtitle=arXiv.org&rft.au=Bellomarini,%20Luigi&rft.date=2018-07-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2092799700%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092799700&rft_id=info:pmid/&rfr_iscdi=true