Data Science with Vadalog: Bridging Machine Learning and Reasoning
Following the recent successful examples of large technology companies, many modern enterprises seek to build knowledge graphs to provide a unified view of corporate knowledge and to draw deep insights using machine learning and logical reasoning. There is currently a perceived disconnect between th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-07 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bellomarini, Luigi Fayzrakhmanov, Ruslan R Gottlob, Georg Kravchenko, Andrey Laurenza, Eleonora Nenov, Yavor Reissfelder, Stephane Sallinger, Emanuel Sherkhonov, Evgeny Wu, Lianlong |
description | Following the recent successful examples of large technology companies, many modern enterprises seek to build knowledge graphs to provide a unified view of corporate knowledge and to draw deep insights using machine learning and logical reasoning. There is currently a perceived disconnect between the traditional approaches for data science, typically based on machine learning and statistical modelling, and systems for reasoning with domain knowledge. In this paper we present a state-of-the-art Knowledge Graph Management System, Vadalog, which delivers highly expressive and efficient logical reasoning and provides seamless integration with modern data science toolkits, such as the Jupyter platform. We demonstrate how to use Vadalog to perform traditional data wrangling tasks, as well as complex logical and probabilistic reasoning. We argue that this is a significant step forward towards combining machine learning and reasoning in data science. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2092799700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092799700</sourcerecordid><originalsourceid>FETCH-proquest_journals_20927997003</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwckksSVQITs5MzUtOVSjPLMlQCEtMSczJT7dScCrKTEnPzEtX8E1MzsjMS1XwSU0sygMJJOalKASlJhbng3g8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGBpZG5paW5gYEycKgA-4Djt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092799700</pqid></control><display><type>article</type><title>Data Science with Vadalog: Bridging Machine Learning and Reasoning</title><source>Free E- Journals</source><creator>Bellomarini, Luigi ; Fayzrakhmanov, Ruslan R ; Gottlob, Georg ; Kravchenko, Andrey ; Laurenza, Eleonora ; Nenov, Yavor ; Reissfelder, Stephane ; Sallinger, Emanuel ; Sherkhonov, Evgeny ; Wu, Lianlong</creator><creatorcontrib>Bellomarini, Luigi ; Fayzrakhmanov, Ruslan R ; Gottlob, Georg ; Kravchenko, Andrey ; Laurenza, Eleonora ; Nenov, Yavor ; Reissfelder, Stephane ; Sallinger, Emanuel ; Sherkhonov, Evgeny ; Wu, Lianlong</creatorcontrib><description>Following the recent successful examples of large technology companies, many modern enterprises seek to build knowledge graphs to provide a unified view of corporate knowledge and to draw deep insights using machine learning and logical reasoning. There is currently a perceived disconnect between the traditional approaches for data science, typically based on machine learning and statistical modelling, and systems for reasoning with domain knowledge. In this paper we present a state-of-the-art Knowledge Graph Management System, Vadalog, which delivers highly expressive and efficient logical reasoning and provides seamless integration with modern data science toolkits, such as the Jupyter platform. We demonstrate how to use Vadalog to perform traditional data wrangling tasks, as well as complex logical and probabilistic reasoning. We argue that this is a significant step forward towards combining machine learning and reasoning in data science.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Cognition & reasoning ; Data science ; Machine learning ; Reasoning ; State of the art ; Statistical analysis ; Statistical models ; Task complexity ; Toolkits</subject><ispartof>arXiv.org, 2018-07</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bellomarini, Luigi</creatorcontrib><creatorcontrib>Fayzrakhmanov, Ruslan R</creatorcontrib><creatorcontrib>Gottlob, Georg</creatorcontrib><creatorcontrib>Kravchenko, Andrey</creatorcontrib><creatorcontrib>Laurenza, Eleonora</creatorcontrib><creatorcontrib>Nenov, Yavor</creatorcontrib><creatorcontrib>Reissfelder, Stephane</creatorcontrib><creatorcontrib>Sallinger, Emanuel</creatorcontrib><creatorcontrib>Sherkhonov, Evgeny</creatorcontrib><creatorcontrib>Wu, Lianlong</creatorcontrib><title>Data Science with Vadalog: Bridging Machine Learning and Reasoning</title><title>arXiv.org</title><description>Following the recent successful examples of large technology companies, many modern enterprises seek to build knowledge graphs to provide a unified view of corporate knowledge and to draw deep insights using machine learning and logical reasoning. There is currently a perceived disconnect between the traditional approaches for data science, typically based on machine learning and statistical modelling, and systems for reasoning with domain knowledge. In this paper we present a state-of-the-art Knowledge Graph Management System, Vadalog, which delivers highly expressive and efficient logical reasoning and provides seamless integration with modern data science toolkits, such as the Jupyter platform. We demonstrate how to use Vadalog to perform traditional data wrangling tasks, as well as complex logical and probabilistic reasoning. We argue that this is a significant step forward towards combining machine learning and reasoning in data science.</description><subject>Artificial intelligence</subject><subject>Cognition & reasoning</subject><subject>Data science</subject><subject>Machine learning</subject><subject>Reasoning</subject><subject>State of the art</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Task complexity</subject><subject>Toolkits</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwckksSVQITs5MzUtOVSjPLMlQCEtMSczJT7dScCrKTEnPzEtX8E1MzsjMS1XwSU0sygMJJOalKASlJhbng3g8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGBpZG5paW5gYEycKgA-4Djt</recordid><startdate>20180723</startdate><enddate>20180723</enddate><creator>Bellomarini, Luigi</creator><creator>Fayzrakhmanov, Ruslan R</creator><creator>Gottlob, Georg</creator><creator>Kravchenko, Andrey</creator><creator>Laurenza, Eleonora</creator><creator>Nenov, Yavor</creator><creator>Reissfelder, Stephane</creator><creator>Sallinger, Emanuel</creator><creator>Sherkhonov, Evgeny</creator><creator>Wu, Lianlong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180723</creationdate><title>Data Science with Vadalog: Bridging Machine Learning and Reasoning</title><author>Bellomarini, Luigi ; Fayzrakhmanov, Ruslan R ; Gottlob, Georg ; Kravchenko, Andrey ; Laurenza, Eleonora ; Nenov, Yavor ; Reissfelder, Stephane ; Sallinger, Emanuel ; Sherkhonov, Evgeny ; Wu, Lianlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20927997003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Cognition & reasoning</topic><topic>Data science</topic><topic>Machine learning</topic><topic>Reasoning</topic><topic>State of the art</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Task complexity</topic><topic>Toolkits</topic><toplevel>online_resources</toplevel><creatorcontrib>Bellomarini, Luigi</creatorcontrib><creatorcontrib>Fayzrakhmanov, Ruslan R</creatorcontrib><creatorcontrib>Gottlob, Georg</creatorcontrib><creatorcontrib>Kravchenko, Andrey</creatorcontrib><creatorcontrib>Laurenza, Eleonora</creatorcontrib><creatorcontrib>Nenov, Yavor</creatorcontrib><creatorcontrib>Reissfelder, Stephane</creatorcontrib><creatorcontrib>Sallinger, Emanuel</creatorcontrib><creatorcontrib>Sherkhonov, Evgeny</creatorcontrib><creatorcontrib>Wu, Lianlong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellomarini, Luigi</au><au>Fayzrakhmanov, Ruslan R</au><au>Gottlob, Georg</au><au>Kravchenko, Andrey</au><au>Laurenza, Eleonora</au><au>Nenov, Yavor</au><au>Reissfelder, Stephane</au><au>Sallinger, Emanuel</au><au>Sherkhonov, Evgeny</au><au>Wu, Lianlong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Data Science with Vadalog: Bridging Machine Learning and Reasoning</atitle><jtitle>arXiv.org</jtitle><date>2018-07-23</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Following the recent successful examples of large technology companies, many modern enterprises seek to build knowledge graphs to provide a unified view of corporate knowledge and to draw deep insights using machine learning and logical reasoning. There is currently a perceived disconnect between the traditional approaches for data science, typically based on machine learning and statistical modelling, and systems for reasoning with domain knowledge. In this paper we present a state-of-the-art Knowledge Graph Management System, Vadalog, which delivers highly expressive and efficient logical reasoning and provides seamless integration with modern data science toolkits, such as the Jupyter platform. We demonstrate how to use Vadalog to perform traditional data wrangling tasks, as well as complex logical and probabilistic reasoning. We argue that this is a significant step forward towards combining machine learning and reasoning in data science.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2092799700 |
source | Free E- Journals |
subjects | Artificial intelligence Cognition & reasoning Data science Machine learning Reasoning State of the art Statistical analysis Statistical models Task complexity Toolkits |
title | Data Science with Vadalog: Bridging Machine Learning and Reasoning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Data%20Science%20with%20Vadalog:%20Bridging%20Machine%20Learning%20and%20Reasoning&rft.jtitle=arXiv.org&rft.au=Bellomarini,%20Luigi&rft.date=2018-07-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2092799700%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092799700&rft_id=info:pmid/&rfr_iscdi=true |