Connes-Landi spheres are homogeneous spaces

In this paper, we review some recent developments of compact quantum groups that arise as the noncommutative toric deformation of compact Lie groups of rank at least two. Noncommutative toric deformation is merely a 2-cocycle deformation using an action of an \(n\)-torus of higher dimension than 2....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-08
1. Verfasser: Wilson, Mitsuru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wilson, Mitsuru
description In this paper, we review some recent developments of compact quantum groups that arise as the noncommutative toric deformation of compact Lie groups of rank at least two. Noncommutative toric deformation is merely a 2-cocycle deformation using an action of an \(n\)-torus of higher dimension than 2. Using the formula (Lemma 5.3) developed in \cite{W2018}, we reconstruct the Connes-Landi noncommutative 7-sphere as a homogeneous space. This is achieved by considering the coaction of the deformation of the coaction of special unitary groups.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2092790335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092790335</sourcerecordid><originalsourceid>FETCH-proquest_journals_20927903353</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQds7Py0st1vVJzEvJVCguyEgtSi1WSCxKVcjIz81PT81LzS8tBoonJqcW8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGBpZG5pYGxsakxcaoAVEYxVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092790335</pqid></control><display><type>article</type><title>Connes-Landi spheres are homogeneous spaces</title><source>Free E- Journals</source><creator>Wilson, Mitsuru</creator><creatorcontrib>Wilson, Mitsuru</creatorcontrib><description>In this paper, we review some recent developments of compact quantum groups that arise as the noncommutative toric deformation of compact Lie groups of rank at least two. Noncommutative toric deformation is merely a 2-cocycle deformation using an action of an \(n\)-torus of higher dimension than 2. Using the formula (Lemma 5.3) developed in \cite{W2018}, we reconstruct the Connes-Landi noncommutative 7-sphere as a homogeneous space. This is achieved by considering the coaction of the deformation of the coaction of special unitary groups.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Deformation ; Lie groups ; Toruses</subject><ispartof>arXiv.org, 2018-08</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wilson, Mitsuru</creatorcontrib><title>Connes-Landi spheres are homogeneous spaces</title><title>arXiv.org</title><description>In this paper, we review some recent developments of compact quantum groups that arise as the noncommutative toric deformation of compact Lie groups of rank at least two. Noncommutative toric deformation is merely a 2-cocycle deformation using an action of an \(n\)-torus of higher dimension than 2. Using the formula (Lemma 5.3) developed in \cite{W2018}, we reconstruct the Connes-Landi noncommutative 7-sphere as a homogeneous space. This is achieved by considering the coaction of the deformation of the coaction of special unitary groups.</description><subject>Deformation</subject><subject>Lie groups</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQds7Py0st1vVJzEvJVCguyEgtSi1WSCxKVcjIz81PT81LzS8tBoonJqcW8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGBpZG5pYGxsakxcaoAVEYxVQ</recordid><startdate>20180811</startdate><enddate>20180811</enddate><creator>Wilson, Mitsuru</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180811</creationdate><title>Connes-Landi spheres are homogeneous spaces</title><author>Wilson, Mitsuru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20927903353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Deformation</topic><topic>Lie groups</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Mitsuru</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Mitsuru</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Connes-Landi spheres are homogeneous spaces</atitle><jtitle>arXiv.org</jtitle><date>2018-08-11</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>In this paper, we review some recent developments of compact quantum groups that arise as the noncommutative toric deformation of compact Lie groups of rank at least two. Noncommutative toric deformation is merely a 2-cocycle deformation using an action of an \(n\)-torus of higher dimension than 2. Using the formula (Lemma 5.3) developed in \cite{W2018}, we reconstruct the Connes-Landi noncommutative 7-sphere as a homogeneous space. This is achieved by considering the coaction of the deformation of the coaction of special unitary groups.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2092790335
source Free E- Journals
subjects Deformation
Lie groups
Toruses
title Connes-Landi spheres are homogeneous spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Connes-Landi%20spheres%20are%20homogeneous%20spaces&rft.jtitle=arXiv.org&rft.au=Wilson,%20Mitsuru&rft.date=2018-08-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2092790335%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092790335&rft_id=info:pmid/&rfr_iscdi=true