Connes-Landi spheres are homogeneous spaces
In this paper, we review some recent developments of compact quantum groups that arise as the noncommutative toric deformation of compact Lie groups of rank at least two. Noncommutative toric deformation is merely a 2-cocycle deformation using an action of an \(n\)-torus of higher dimension than 2....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-08 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wilson, Mitsuru |
description | In this paper, we review some recent developments of compact quantum groups that arise as the noncommutative toric deformation of compact Lie groups of rank at least two. Noncommutative toric deformation is merely a 2-cocycle deformation using an action of an \(n\)-torus of higher dimension than 2. Using the formula (Lemma 5.3) developed in \cite{W2018}, we reconstruct the Connes-Landi noncommutative 7-sphere as a homogeneous space. This is achieved by considering the coaction of the deformation of the coaction of special unitary groups. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2092790335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092790335</sourcerecordid><originalsourceid>FETCH-proquest_journals_20927903353</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQds7Py0st1vVJzEvJVCguyEgtSi1WSCxKVcjIz81PT81LzS8tBoonJqcW8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGBpZG5pYGxsakxcaoAVEYxVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092790335</pqid></control><display><type>article</type><title>Connes-Landi spheres are homogeneous spaces</title><source>Free E- Journals</source><creator>Wilson, Mitsuru</creator><creatorcontrib>Wilson, Mitsuru</creatorcontrib><description>In this paper, we review some recent developments of compact quantum groups that arise as the noncommutative toric deformation of compact Lie groups of rank at least two. Noncommutative toric deformation is merely a 2-cocycle deformation using an action of an \(n\)-torus of higher dimension than 2. Using the formula (Lemma 5.3) developed in \cite{W2018}, we reconstruct the Connes-Landi noncommutative 7-sphere as a homogeneous space. This is achieved by considering the coaction of the deformation of the coaction of special unitary groups.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Deformation ; Lie groups ; Toruses</subject><ispartof>arXiv.org, 2018-08</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wilson, Mitsuru</creatorcontrib><title>Connes-Landi spheres are homogeneous spaces</title><title>arXiv.org</title><description>In this paper, we review some recent developments of compact quantum groups that arise as the noncommutative toric deformation of compact Lie groups of rank at least two. Noncommutative toric deformation is merely a 2-cocycle deformation using an action of an \(n\)-torus of higher dimension than 2. Using the formula (Lemma 5.3) developed in \cite{W2018}, we reconstruct the Connes-Landi noncommutative 7-sphere as a homogeneous space. This is achieved by considering the coaction of the deformation of the coaction of special unitary groups.</description><subject>Deformation</subject><subject>Lie groups</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQds7Py0st1vVJzEvJVCguyEgtSi1WSCxKVcjIz81PT81LzS8tBoonJqcW8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGBpZG5pYGxsakxcaoAVEYxVQ</recordid><startdate>20180811</startdate><enddate>20180811</enddate><creator>Wilson, Mitsuru</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180811</creationdate><title>Connes-Landi spheres are homogeneous spaces</title><author>Wilson, Mitsuru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20927903353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Deformation</topic><topic>Lie groups</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Mitsuru</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Mitsuru</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Connes-Landi spheres are homogeneous spaces</atitle><jtitle>arXiv.org</jtitle><date>2018-08-11</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>In this paper, we review some recent developments of compact quantum groups that arise as the noncommutative toric deformation of compact Lie groups of rank at least two. Noncommutative toric deformation is merely a 2-cocycle deformation using an action of an \(n\)-torus of higher dimension than 2. Using the formula (Lemma 5.3) developed in \cite{W2018}, we reconstruct the Connes-Landi noncommutative 7-sphere as a homogeneous space. This is achieved by considering the coaction of the deformation of the coaction of special unitary groups.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2092790335 |
source | Free E- Journals |
subjects | Deformation Lie groups Toruses |
title | Connes-Landi spheres are homogeneous spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Connes-Landi%20spheres%20are%20homogeneous%20spaces&rft.jtitle=arXiv.org&rft.au=Wilson,%20Mitsuru&rft.date=2018-08-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2092790335%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092790335&rft_id=info:pmid/&rfr_iscdi=true |