Scanning probe microscopy of thermally excited mechanical modes of an optical microcavity

The resonant buildup of light within optical microcavities elevates the radiation pressure which mediates coupling of optical modes to the mechanical modes of a microcavity. Above a certain threshold pump power, regenerative mechanical oscillation occurs causing oscillation of certain mechanical eig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2006-02
Hauptverfasser: Kippenberg, T J, Rokhsari, H, Vahala, K J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kippenberg, T J
Rokhsari, H
Vahala, K J
description The resonant buildup of light within optical microcavities elevates the radiation pressure which mediates coupling of optical modes to the mechanical modes of a microcavity. Above a certain threshold pump power, regenerative mechanical oscillation occurs causing oscillation of certain mechanical eigenmodes. Here, we present a methodology to spatially image the micro-mechanical resonances of a toroid microcavity using a scanning probe technique. The method relies on recording the induced frequency shift of the mechanical eigenmode when in contact with a scanning probe tip. The method is passive in nature and achieves a sensitivity sufficient to spatially resolve the vibrational mode pattern associated with the thermally agitated displacement at room temperature. The recorded mechanical mode patterns are in good qualitative agreement with the theoretical strain fields as obtained by finite element simulations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2092644229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092644229</sourcerecordid><originalsourceid>FETCH-proquest_journals_20926442293</originalsourceid><addsrcrecordid>eNqNjssKwjAURIMgWLT_cMF1IaYP7VoU97pxJTG9tSl51CQV-_e26Ae4Gpg5w8yMRCxNN8kuY2xBYu9bSikrtizP04hcz4IbI80DOmfvCFoKZ72w3QC2htCg01ypAfAtZMAKNIqGGym4Am0r9BPFDdgufL2pLvhLhmFF5jVXHuOfLsn6eLjsT8k49OzRh1tre2fG6MZoyYps_Fem_1EfR4pDAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092644229</pqid></control><display><type>article</type><title>Scanning probe microscopy of thermally excited mechanical modes of an optical microcavity</title><source>Free E- Journals</source><creator>Kippenberg, T J ; Rokhsari, H ; Vahala, K J</creator><creatorcontrib>Kippenberg, T J ; Rokhsari, H ; Vahala, K J</creatorcontrib><description>The resonant buildup of light within optical microcavities elevates the radiation pressure which mediates coupling of optical modes to the mechanical modes of a microcavity. Above a certain threshold pump power, regenerative mechanical oscillation occurs causing oscillation of certain mechanical eigenmodes. Here, we present a methodology to spatially image the micro-mechanical resonances of a toroid microcavity using a scanning probe technique. The method relies on recording the induced frequency shift of the mechanical eigenmode when in contact with a scanning probe tip. The method is passive in nature and achieves a sensitivity sufficient to spatially resolve the vibrational mode pattern associated with the thermally agitated displacement at room temperature. The recorded mechanical mode patterns are in good qualitative agreement with the theoretical strain fields as obtained by finite element simulations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Finite element method ; Frequency shift ; Microcavities ; Microscopes ; Qualitative analysis ; Radiation pressure ; Recording ; Scanning probe microscopy</subject><ispartof>arXiv.org, 2006-02</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/physics/0602123.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Kippenberg, T J</creatorcontrib><creatorcontrib>Rokhsari, H</creatorcontrib><creatorcontrib>Vahala, K J</creatorcontrib><title>Scanning probe microscopy of thermally excited mechanical modes of an optical microcavity</title><title>arXiv.org</title><description>The resonant buildup of light within optical microcavities elevates the radiation pressure which mediates coupling of optical modes to the mechanical modes of a microcavity. Above a certain threshold pump power, regenerative mechanical oscillation occurs causing oscillation of certain mechanical eigenmodes. Here, we present a methodology to spatially image the micro-mechanical resonances of a toroid microcavity using a scanning probe technique. The method relies on recording the induced frequency shift of the mechanical eigenmode when in contact with a scanning probe tip. The method is passive in nature and achieves a sensitivity sufficient to spatially resolve the vibrational mode pattern associated with the thermally agitated displacement at room temperature. The recorded mechanical mode patterns are in good qualitative agreement with the theoretical strain fields as obtained by finite element simulations.</description><subject>Finite element method</subject><subject>Frequency shift</subject><subject>Microcavities</subject><subject>Microscopes</subject><subject>Qualitative analysis</subject><subject>Radiation pressure</subject><subject>Recording</subject><subject>Scanning probe microscopy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjssKwjAURIMgWLT_cMF1IaYP7VoU97pxJTG9tSl51CQV-_e26Ae4Gpg5w8yMRCxNN8kuY2xBYu9bSikrtizP04hcz4IbI80DOmfvCFoKZ72w3QC2htCg01ypAfAtZMAKNIqGGym4Am0r9BPFDdgufL2pLvhLhmFF5jVXHuOfLsn6eLjsT8k49OzRh1tre2fG6MZoyYps_Fem_1EfR4pDAw</recordid><startdate>20060217</startdate><enddate>20060217</enddate><creator>Kippenberg, T J</creator><creator>Rokhsari, H</creator><creator>Vahala, K J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20060217</creationdate><title>Scanning probe microscopy of thermally excited mechanical modes of an optical microcavity</title><author>Kippenberg, T J ; Rokhsari, H ; Vahala, K J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20926442293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Finite element method</topic><topic>Frequency shift</topic><topic>Microcavities</topic><topic>Microscopes</topic><topic>Qualitative analysis</topic><topic>Radiation pressure</topic><topic>Recording</topic><topic>Scanning probe microscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Kippenberg, T J</creatorcontrib><creatorcontrib>Rokhsari, H</creatorcontrib><creatorcontrib>Vahala, K J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kippenberg, T J</au><au>Rokhsari, H</au><au>Vahala, K J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Scanning probe microscopy of thermally excited mechanical modes of an optical microcavity</atitle><jtitle>arXiv.org</jtitle><date>2006-02-17</date><risdate>2006</risdate><eissn>2331-8422</eissn><abstract>The resonant buildup of light within optical microcavities elevates the radiation pressure which mediates coupling of optical modes to the mechanical modes of a microcavity. Above a certain threshold pump power, regenerative mechanical oscillation occurs causing oscillation of certain mechanical eigenmodes. Here, we present a methodology to spatially image the micro-mechanical resonances of a toroid microcavity using a scanning probe technique. The method relies on recording the induced frequency shift of the mechanical eigenmode when in contact with a scanning probe tip. The method is passive in nature and achieves a sensitivity sufficient to spatially resolve the vibrational mode pattern associated with the thermally agitated displacement at room temperature. The recorded mechanical mode patterns are in good qualitative agreement with the theoretical strain fields as obtained by finite element simulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2006-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2092644229
source Free E- Journals
subjects Finite element method
Frequency shift
Microcavities
Microscopes
Qualitative analysis
Radiation pressure
Recording
Scanning probe microscopy
title Scanning probe microscopy of thermally excited mechanical modes of an optical microcavity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Scanning%20probe%20microscopy%20of%20thermally%20excited%20mechanical%20modes%20of%20an%20optical%20microcavity&rft.jtitle=arXiv.org&rft.au=Kippenberg,%20T%20J&rft.date=2006-02-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2092644229%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092644229&rft_id=info:pmid/&rfr_iscdi=true