Receiver-Operating-Characteristic Analysis Reveals Superiority of Scale-Dependent Wavelet and Spectral Measures for Assessing Cardiac Dysfunction
Receiver-operating-characteristic (ROC) analysis was used to assess the suitability of various heart rate variability (HRV) measures for correctly classifying electrocardiogram records of varying lengths as normal or revealing the presence of heart failure. Scale-dependent HRV measures were found to...
Gespeichert in:
Veröffentlicht in: | arXiv.org 1999-01 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Thurner, Stefan Feurstein, Markus C Lowen, Steven B Teich, Malvin C |
description | Receiver-operating-characteristic (ROC) analysis was used to assess the suitability of various heart rate variability (HRV) measures for correctly classifying electrocardiogram records of varying lengths as normal or revealing the presence of heart failure. Scale-dependent HRV measures were found to be substantially superior to scale-independent measures (scaling exponents) for discriminating the two classes of data over a broad range of record lengths. The wavelet-coefficient standard deviation at a scale near 32 heartbeat intervals, and its spectral counterpart near 1/32 cycles per interval, provide reliable results using record lengths just minutes long. A jittered integrate-and-fire model built around a fractal Gaussian-noise kernel provides a realistic, though not perfect, simulation of heartbeat sequences. |
doi_str_mv | 10.48550/arxiv.9901007 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2092637419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092637419</sourcerecordid><originalsourceid>FETCH-proquest_journals_20926374193</originalsourceid><addsrcrecordid>eNqNjsFKw0AQQBdBsGivngc8p242SdMcS6p4kUIjeCzDZqJbwm6c2QTzGf6xOfgBnt7lwXtK3ad6k--KQj8if7tpU1U61bq8UiuTZWmyy425UWuRi9babEtTFNlK_ZzIkpuIk-NAjNH5j6T-REYbiZ1EZ2HvsZ_FCZxoIuwFmnFRXWAXZwgdNBZ7Sg40kG_JR3jHiXqKgL6FZiAbGXt4JZSRSaALDHsREllSUCO3Di0cZulGb6ML_k5dd0uF1n-8VQ_PT2_1SzJw-BpJ4vkSRl6e5Gx0ZbZZmadV9j_rF-3iXZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092637419</pqid></control><display><type>article</type><title>Receiver-Operating-Characteristic Analysis Reveals Superiority of Scale-Dependent Wavelet and Spectral Measures for Assessing Cardiac Dysfunction</title><source>Free E- Journals</source><creator>Thurner, Stefan ; Feurstein, Markus C ; Lowen, Steven B ; Teich, Malvin C</creator><creatorcontrib>Thurner, Stefan ; Feurstein, Markus C ; Lowen, Steven B ; Teich, Malvin C</creatorcontrib><description>Receiver-operating-characteristic (ROC) analysis was used to assess the suitability of various heart rate variability (HRV) measures for correctly classifying electrocardiogram records of varying lengths as normal or revealing the presence of heart failure. Scale-dependent HRV measures were found to be substantially superior to scale-independent measures (scaling exponents) for discriminating the two classes of data over a broad range of record lengths. The wavelet-coefficient standard deviation at a scale near 32 heartbeat intervals, and its spectral counterpart near 1/32 cycles per interval, provide reliable results using record lengths just minutes long. A jittered integrate-and-fire model built around a fractal Gaussian-noise kernel provides a realistic, though not perfect, simulation of heartbeat sequences.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.9901007</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Electrocardiography ; Fractal models ; Heart rate ; Wavelet analysis</subject><ispartof>arXiv.org, 1999-01</ispartof><rights>1999. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27925</link.rule.ids></links><search><creatorcontrib>Thurner, Stefan</creatorcontrib><creatorcontrib>Feurstein, Markus C</creatorcontrib><creatorcontrib>Lowen, Steven B</creatorcontrib><creatorcontrib>Teich, Malvin C</creatorcontrib><title>Receiver-Operating-Characteristic Analysis Reveals Superiority of Scale-Dependent Wavelet and Spectral Measures for Assessing Cardiac Dysfunction</title><title>arXiv.org</title><description>Receiver-operating-characteristic (ROC) analysis was used to assess the suitability of various heart rate variability (HRV) measures for correctly classifying electrocardiogram records of varying lengths as normal or revealing the presence of heart failure. Scale-dependent HRV measures were found to be substantially superior to scale-independent measures (scaling exponents) for discriminating the two classes of data over a broad range of record lengths. The wavelet-coefficient standard deviation at a scale near 32 heartbeat intervals, and its spectral counterpart near 1/32 cycles per interval, provide reliable results using record lengths just minutes long. A jittered integrate-and-fire model built around a fractal Gaussian-noise kernel provides a realistic, though not perfect, simulation of heartbeat sequences.</description><subject>Computer simulation</subject><subject>Electrocardiography</subject><subject>Fractal models</subject><subject>Heart rate</subject><subject>Wavelet analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjsFKw0AQQBdBsGivngc8p242SdMcS6p4kUIjeCzDZqJbwm6c2QTzGf6xOfgBnt7lwXtK3ad6k--KQj8if7tpU1U61bq8UiuTZWmyy425UWuRi9babEtTFNlK_ZzIkpuIk-NAjNH5j6T-REYbiZ1EZ2HvsZ_FCZxoIuwFmnFRXWAXZwgdNBZ7Sg40kG_JR3jHiXqKgL6FZiAbGXt4JZSRSaALDHsREllSUCO3Di0cZulGb6ML_k5dd0uF1n-8VQ_PT2_1SzJw-BpJ4vkSRl6e5Gx0ZbZZmadV9j_rF-3iXZE</recordid><startdate>19990108</startdate><enddate>19990108</enddate><creator>Thurner, Stefan</creator><creator>Feurstein, Markus C</creator><creator>Lowen, Steven B</creator><creator>Teich, Malvin C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19990108</creationdate><title>Receiver-Operating-Characteristic Analysis Reveals Superiority of Scale-Dependent Wavelet and Spectral Measures for Assessing Cardiac Dysfunction</title><author>Thurner, Stefan ; Feurstein, Markus C ; Lowen, Steven B ; Teich, Malvin C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20926374193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Computer simulation</topic><topic>Electrocardiography</topic><topic>Fractal models</topic><topic>Heart rate</topic><topic>Wavelet analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Thurner, Stefan</creatorcontrib><creatorcontrib>Feurstein, Markus C</creatorcontrib><creatorcontrib>Lowen, Steven B</creatorcontrib><creatorcontrib>Teich, Malvin C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thurner, Stefan</au><au>Feurstein, Markus C</au><au>Lowen, Steven B</au><au>Teich, Malvin C</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Receiver-Operating-Characteristic Analysis Reveals Superiority of Scale-Dependent Wavelet and Spectral Measures for Assessing Cardiac Dysfunction</atitle><jtitle>arXiv.org</jtitle><date>1999-01-08</date><risdate>1999</risdate><eissn>2331-8422</eissn><abstract>Receiver-operating-characteristic (ROC) analysis was used to assess the suitability of various heart rate variability (HRV) measures for correctly classifying electrocardiogram records of varying lengths as normal or revealing the presence of heart failure. Scale-dependent HRV measures were found to be substantially superior to scale-independent measures (scaling exponents) for discriminating the two classes of data over a broad range of record lengths. The wavelet-coefficient standard deviation at a scale near 32 heartbeat intervals, and its spectral counterpart near 1/32 cycles per interval, provide reliable results using record lengths just minutes long. A jittered integrate-and-fire model built around a fractal Gaussian-noise kernel provides a realistic, though not perfect, simulation of heartbeat sequences.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.9901007</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 1999-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2092637419 |
source | Free E- Journals |
subjects | Computer simulation Electrocardiography Fractal models Heart rate Wavelet analysis |
title | Receiver-Operating-Characteristic Analysis Reveals Superiority of Scale-Dependent Wavelet and Spectral Measures for Assessing Cardiac Dysfunction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Receiver-Operating-Characteristic%20Analysis%20Reveals%20Superiority%20of%20Scale-Dependent%20Wavelet%20and%20Spectral%20Measures%20for%20Assessing%20Cardiac%20Dysfunction&rft.jtitle=arXiv.org&rft.au=Thurner,%20Stefan&rft.date=1999-01-08&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.9901007&rft_dat=%3Cproquest%3E2092637419%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092637419&rft_id=info:pmid/&rfr_iscdi=true |