Symmetric complete sum-free sets in cyclic groups
We present constructions of symmetric complete sum-free sets in general finite cyclic groups. It is shown that the relative sizes of the sets are dense in [0, 1/3], answering a question of Cameron, and that the number of those contained in the cyclic group of order n is exponential in n . For primes...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2018-08, Vol.227 (2), p.931-956 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 956 |
---|---|
container_issue | 2 |
container_start_page | 931 |
container_title | Israel journal of mathematics |
container_volume | 227 |
creator | Haviv, Ishay Levy, Dan |
description | We present constructions of symmetric complete sum-free sets in general finite cyclic groups. It is shown that the relative sizes of the sets are dense in [0, 1/3], answering a question of Cameron, and that the number of those contained in the cyclic group of order
n
is exponential in
n
. For primes
p
, we provide a full characterization of the symmetric complete sum-free subsets of ℤ
p
of size at least (1/3−
c
)·
p
, where
c
> 0 is a universal constant. |
doi_str_mv | 10.1007/s11856-018-1754-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2092574599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092574599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1836fd955959995d7401cb960c9b3624e20a70171adce13a6c57e074692d2ee43</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9giMRvunJwdj6jiS6rEAMxW6lyqVE0T7GTov8dVkJiY7h2e9z3pEeIW4R4BzENELElLwFKioULSmVggaZIlIZ6LBYBCqdCoS3EV4w6AcoP5QuDHset4DK3PfN8Nex45i1Mnm8Ap8Biz9pD5o98nYBv6aYjX4qKp9pFvfu9SfD0_fa5e5fr95W31uJY-Rz1KLHPd1JbIkrWWalMA-o3V4O0m16pgBZUBNFjVnjGvtCfDYAptVa2Yi3wp7ubdIfTfE8fR7fopHNJLp8AqMkUaThTOlA99jIEbN4S2q8LRIbiTGTebccmMO5lxlDpq7sTEHrYc_pb_L_0AxltkDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092574599</pqid></control><display><type>article</type><title>Symmetric complete sum-free sets in cyclic groups</title><source>SpringerLink (Online service)</source><creator>Haviv, Ishay ; Levy, Dan</creator><creatorcontrib>Haviv, Ishay ; Levy, Dan</creatorcontrib><description>We present constructions of symmetric complete sum-free sets in general finite cyclic groups. It is shown that the relative sizes of the sets are dense in [0, 1/3], answering a question of Cameron, and that the number of those contained in the cyclic group of order
n
is exponential in
n
. For primes
p
, we provide a full characterization of the symmetric complete sum-free subsets of ℤ
p
of size at least (1/3−
c
)·
p
, where
c
> 0 is a universal constant.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-018-1754-5</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Completeness ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical</subject><ispartof>Israel journal of mathematics, 2018-08, Vol.227 (2), p.931-956</ispartof><rights>Hebrew University of Jerusalem 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1836fd955959995d7401cb960c9b3624e20a70171adce13a6c57e074692d2ee43</citedby><cites>FETCH-LOGICAL-c316t-1836fd955959995d7401cb960c9b3624e20a70171adce13a6c57e074692d2ee43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11856-018-1754-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11856-018-1754-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Haviv, Ishay</creatorcontrib><creatorcontrib>Levy, Dan</creatorcontrib><title>Symmetric complete sum-free sets in cyclic groups</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>We present constructions of symmetric complete sum-free sets in general finite cyclic groups. It is shown that the relative sizes of the sets are dense in [0, 1/3], answering a question of Cameron, and that the number of those contained in the cyclic group of order
n
is exponential in
n
. For primes
p
, we provide a full characterization of the symmetric complete sum-free subsets of ℤ
p
of size at least (1/3−
c
)·
p
, where
c
> 0 is a universal constant.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Completeness</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqXwA9giMRvunJwdj6jiS6rEAMxW6lyqVE0T7GTov8dVkJiY7h2e9z3pEeIW4R4BzENELElLwFKioULSmVggaZIlIZ6LBYBCqdCoS3EV4w6AcoP5QuDHset4DK3PfN8Nex45i1Mnm8Ap8Biz9pD5o98nYBv6aYjX4qKp9pFvfu9SfD0_fa5e5fr95W31uJY-Rz1KLHPd1JbIkrWWalMA-o3V4O0m16pgBZUBNFjVnjGvtCfDYAptVa2Yi3wp7ubdIfTfE8fR7fopHNJLp8AqMkUaThTOlA99jIEbN4S2q8LRIbiTGTebccmMO5lxlDpq7sTEHrYc_pb_L_0AxltkDQ</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Haviv, Ishay</creator><creator>Levy, Dan</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180801</creationdate><title>Symmetric complete sum-free sets in cyclic groups</title><author>Haviv, Ishay ; Levy, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1836fd955959995d7401cb960c9b3624e20a70171adce13a6c57e074692d2ee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Completeness</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haviv, Ishay</creatorcontrib><creatorcontrib>Levy, Dan</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haviv, Ishay</au><au>Levy, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetric complete sum-free sets in cyclic groups</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>227</volume><issue>2</issue><spage>931</spage><epage>956</epage><pages>931-956</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>We present constructions of symmetric complete sum-free sets in general finite cyclic groups. It is shown that the relative sizes of the sets are dense in [0, 1/3], answering a question of Cameron, and that the number of those contained in the cyclic group of order
n
is exponential in
n
. For primes
p
, we provide a full characterization of the symmetric complete sum-free subsets of ℤ
p
of size at least (1/3−
c
)·
p
, where
c
> 0 is a universal constant.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-018-1754-5</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-2172 |
ispartof | Israel journal of mathematics, 2018-08, Vol.227 (2), p.931-956 |
issn | 0021-2172 1565-8511 |
language | eng |
recordid | cdi_proquest_journals_2092574599 |
source | SpringerLink (Online service) |
subjects | Algebra Analysis Applications of Mathematics Completeness Group Theory and Generalizations Mathematical and Computational Physics Mathematics Mathematics and Statistics Theoretical |
title | Symmetric complete sum-free sets in cyclic groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetric%20complete%20sum-free%20sets%20in%20cyclic%20groups&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Haviv,%20Ishay&rft.date=2018-08-01&rft.volume=227&rft.issue=2&rft.spage=931&rft.epage=956&rft.pages=931-956&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-018-1754-5&rft_dat=%3Cproquest_cross%3E2092574599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092574599&rft_id=info:pmid/&rfr_iscdi=true |