Modified Legendre Operational Matrix of Differentiation for Solving Strongly Nonlinear Dynamical Systems
Complex vibration phenomena appear so frequently in many engineering and physical experiments, and they are well modeled using nonlinear differential equations. However, contrary to the linear models, nonlinear models are difficult to analyze analytically or numerically and particularly for long-tim...
Gespeichert in:
Veröffentlicht in: | International journal of applied and computational mathematics 2018-10, Vol.4 (5), p.1-13, Article 117 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | International journal of applied and computational mathematics |
container_volume | 4 |
creator | Alomari, A. K. Syam, Muhammed Al-Jamal, Mohammad F. Bataineh, A. Sami Anakira, N. R. Jameel, A. F. |
description | Complex vibration phenomena appear so frequently in many engineering and physical experiments, and they are well modeled using nonlinear differential equations. However, contrary to the linear models, nonlinear models are difficult to analyze analytically or numerically and particularly for long-time spans. In this paper, we propose a novel method to provide approximate analytic solutions of an important class of nonlinear differential equations that describe the underdamped, overdamped, and oscillatory motions of massspring systems subjected to external excitations. The method is based on a novel modification of the Legendre operator matrix of differentiation technique which results in solutions that are accurate not only for short-time spans but also for long-time spans as well. We provide error analysis and present several examples to demonstrate the efficiency of the proposed method. |
doi_str_mv | 10.1007/s40819-018-0545-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2092573347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092573347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2313-46a28aff1e8ae1bff4e7fd65c271b7643cc31ffc32b48e2d9d4a73887b9eb6533</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EElXpB7CzxDrgV2JniVpeUqGLwtpyknFwldrFThH5e1KKxIrVjDT3HmkOQpeUXFNC5E0SRNEyI1RlJBd5xk_QhNGyzHJZFqfjzsW4U8LP0SylDSGEUSEJUxP0_hwaZx00eAkt-CYCXu0gmt4Fbzr8bProvnCweOGshQi-dz83bEPE69B9Ot_idR-Db7sBvwTfOQ8m4sXgzdbVI2I9pB626QKdWdMlmP3OKXq7v3udP2bL1cPT_HaZ1YxTnonCMGWspaAM0MpaAdI2RV4zSStZCF7XnFpbc1YJBawpG2EkV0pWJVRFzvkUXR25uxg-9pB6vQn7OP6SNCMlyyXnQo4pekzVMaQUwepddFsTB02JPjjVR6d6dKoPTvWBzI6dNGZ9C_GP_H_pG9CXevA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092573347</pqid></control><display><type>article</type><title>Modified Legendre Operational Matrix of Differentiation for Solving Strongly Nonlinear Dynamical Systems</title><source>Springer Nature - Complete Springer Journals</source><creator>Alomari, A. K. ; Syam, Muhammed ; Al-Jamal, Mohammad F. ; Bataineh, A. Sami ; Anakira, N. R. ; Jameel, A. F.</creator><creatorcontrib>Alomari, A. K. ; Syam, Muhammed ; Al-Jamal, Mohammad F. ; Bataineh, A. Sami ; Anakira, N. R. ; Jameel, A. F.</creatorcontrib><description>Complex vibration phenomena appear so frequently in many engineering and physical experiments, and they are well modeled using nonlinear differential equations. However, contrary to the linear models, nonlinear models are difficult to analyze analytically or numerically and particularly for long-time spans. In this paper, we propose a novel method to provide approximate analytic solutions of an important class of nonlinear differential equations that describe the underdamped, overdamped, and oscillatory motions of massspring systems subjected to external excitations. The method is based on a novel modification of the Legendre operator matrix of differentiation technique which results in solutions that are accurate not only for short-time spans but also for long-time spans as well. We provide error analysis and present several examples to demonstrate the efficiency of the proposed method.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-018-0545-3</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Computational mathematics ; Computational Science and Engineering ; Differentiation ; Error analysis ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Nonlinear differential equations ; Nonlinear equations ; Nonlinear systems ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Theoretical</subject><ispartof>International journal of applied and computational mathematics, 2018-10, Vol.4 (5), p.1-13, Article 117</ispartof><rights>Springer Nature India Private Limited 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2313-46a28aff1e8ae1bff4e7fd65c271b7643cc31ffc32b48e2d9d4a73887b9eb6533</citedby><cites>FETCH-LOGICAL-c2313-46a28aff1e8ae1bff4e7fd65c271b7643cc31ffc32b48e2d9d4a73887b9eb6533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40819-018-0545-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40819-018-0545-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27913,27914,41477,42546,51308</link.rule.ids></links><search><creatorcontrib>Alomari, A. K.</creatorcontrib><creatorcontrib>Syam, Muhammed</creatorcontrib><creatorcontrib>Al-Jamal, Mohammad F.</creatorcontrib><creatorcontrib>Bataineh, A. Sami</creatorcontrib><creatorcontrib>Anakira, N. R.</creatorcontrib><creatorcontrib>Jameel, A. F.</creatorcontrib><title>Modified Legendre Operational Matrix of Differentiation for Solving Strongly Nonlinear Dynamical Systems</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>Complex vibration phenomena appear so frequently in many engineering and physical experiments, and they are well modeled using nonlinear differential equations. However, contrary to the linear models, nonlinear models are difficult to analyze analytically or numerically and particularly for long-time spans. In this paper, we propose a novel method to provide approximate analytic solutions of an important class of nonlinear differential equations that describe the underdamped, overdamped, and oscillatory motions of massspring systems subjected to external excitations. The method is based on a novel modification of the Legendre operator matrix of differentiation technique which results in solutions that are accurate not only for short-time spans but also for long-time spans as well. We provide error analysis and present several examples to demonstrate the efficiency of the proposed method.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Differentiation</subject><subject>Error analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Theoretical</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EElXpB7CzxDrgV2JniVpeUqGLwtpyknFwldrFThH5e1KKxIrVjDT3HmkOQpeUXFNC5E0SRNEyI1RlJBd5xk_QhNGyzHJZFqfjzsW4U8LP0SylDSGEUSEJUxP0_hwaZx00eAkt-CYCXu0gmt4Fbzr8bProvnCweOGshQi-dz83bEPE69B9Ot_idR-Db7sBvwTfOQ8m4sXgzdbVI2I9pB626QKdWdMlmP3OKXq7v3udP2bL1cPT_HaZ1YxTnonCMGWspaAM0MpaAdI2RV4zSStZCF7XnFpbc1YJBawpG2EkV0pWJVRFzvkUXR25uxg-9pB6vQn7OP6SNCMlyyXnQo4pekzVMaQUwepddFsTB02JPjjVR6d6dKoPTvWBzI6dNGZ9C_GP_H_pG9CXevA</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Alomari, A. K.</creator><creator>Syam, Muhammed</creator><creator>Al-Jamal, Mohammad F.</creator><creator>Bataineh, A. Sami</creator><creator>Anakira, N. R.</creator><creator>Jameel, A. F.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181001</creationdate><title>Modified Legendre Operational Matrix of Differentiation for Solving Strongly Nonlinear Dynamical Systems</title><author>Alomari, A. K. ; Syam, Muhammed ; Al-Jamal, Mohammad F. ; Bataineh, A. Sami ; Anakira, N. R. ; Jameel, A. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2313-46a28aff1e8ae1bff4e7fd65c271b7643cc31ffc32b48e2d9d4a73887b9eb6533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Differentiation</topic><topic>Error analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alomari, A. K.</creatorcontrib><creatorcontrib>Syam, Muhammed</creatorcontrib><creatorcontrib>Al-Jamal, Mohammad F.</creatorcontrib><creatorcontrib>Bataineh, A. Sami</creatorcontrib><creatorcontrib>Anakira, N. R.</creatorcontrib><creatorcontrib>Jameel, A. F.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alomari, A. K.</au><au>Syam, Muhammed</au><au>Al-Jamal, Mohammad F.</au><au>Bataineh, A. Sami</au><au>Anakira, N. R.</au><au>Jameel, A. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified Legendre Operational Matrix of Differentiation for Solving Strongly Nonlinear Dynamical Systems</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>4</volume><issue>5</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>117</artnum><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>Complex vibration phenomena appear so frequently in many engineering and physical experiments, and they are well modeled using nonlinear differential equations. However, contrary to the linear models, nonlinear models are difficult to analyze analytically or numerically and particularly for long-time spans. In this paper, we propose a novel method to provide approximate analytic solutions of an important class of nonlinear differential equations that describe the underdamped, overdamped, and oscillatory motions of massspring systems subjected to external excitations. The method is based on a novel modification of the Legendre operator matrix of differentiation technique which results in solutions that are accurate not only for short-time spans but also for long-time spans as well. We provide error analysis and present several examples to demonstrate the efficiency of the proposed method.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-018-0545-3</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2349-5103 |
ispartof | International journal of applied and computational mathematics, 2018-10, Vol.4 (5), p.1-13, Article 117 |
issn | 2349-5103 2199-5796 |
language | eng |
recordid | cdi_proquest_journals_2092573347 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Applied mathematics Computational mathematics Computational Science and Engineering Differentiation Error analysis Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematical models Mathematics Mathematics and Statistics Nonlinear differential equations Nonlinear equations Nonlinear systems Nuclear Energy Operations Research/Decision Theory Original Paper Theoretical |
title | Modified Legendre Operational Matrix of Differentiation for Solving Strongly Nonlinear Dynamical Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20Legendre%20Operational%20Matrix%20of%20Differentiation%20for%20Solving%20Strongly%20Nonlinear%20Dynamical%20Systems&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Alomari,%20A.%20K.&rft.date=2018-10-01&rft.volume=4&rft.issue=5&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=117&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-018-0545-3&rft_dat=%3Cproquest_cross%3E2092573347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092573347&rft_id=info:pmid/&rfr_iscdi=true |