Modified Legendre Operational Matrix of Differentiation for Solving Strongly Nonlinear Dynamical Systems

Complex vibration phenomena appear so frequently in many engineering and physical experiments, and they are well modeled using nonlinear differential equations. However, contrary to the linear models, nonlinear models are difficult to analyze analytically or numerically and particularly for long-tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied and computational mathematics 2018-10, Vol.4 (5), p.1-13, Article 117
Hauptverfasser: Alomari, A. K., Syam, Muhammed, Al-Jamal, Mohammad F., Bataineh, A. Sami, Anakira, N. R., Jameel, A. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 5
container_start_page 1
container_title International journal of applied and computational mathematics
container_volume 4
creator Alomari, A. K.
Syam, Muhammed
Al-Jamal, Mohammad F.
Bataineh, A. Sami
Anakira, N. R.
Jameel, A. F.
description Complex vibration phenomena appear so frequently in many engineering and physical experiments, and they are well modeled using nonlinear differential equations. However, contrary to the linear models, nonlinear models are difficult to analyze analytically or numerically and particularly for long-time spans. In this paper, we propose a novel method to provide approximate analytic solutions of an important class of nonlinear differential equations that describe the underdamped, overdamped, and oscillatory motions of massspring systems subjected to external excitations. The method is based on a novel modification of the Legendre operator matrix of differentiation technique which results in solutions that are accurate not only for short-time spans but also for long-time spans as well. We provide error analysis and present several examples to demonstrate the efficiency of the proposed method.
doi_str_mv 10.1007/s40819-018-0545-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2092573347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092573347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2313-46a28aff1e8ae1bff4e7fd65c271b7643cc31ffc32b48e2d9d4a73887b9eb6533</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EElXpB7CzxDrgV2JniVpeUqGLwtpyknFwldrFThH5e1KKxIrVjDT3HmkOQpeUXFNC5E0SRNEyI1RlJBd5xk_QhNGyzHJZFqfjzsW4U8LP0SylDSGEUSEJUxP0_hwaZx00eAkt-CYCXu0gmt4Fbzr8bProvnCweOGshQi-dz83bEPE69B9Ot_idR-Db7sBvwTfOQ8m4sXgzdbVI2I9pB626QKdWdMlmP3OKXq7v3udP2bL1cPT_HaZ1YxTnonCMGWspaAM0MpaAdI2RV4zSStZCF7XnFpbc1YJBawpG2EkV0pWJVRFzvkUXR25uxg-9pB6vQn7OP6SNCMlyyXnQo4pekzVMaQUwepddFsTB02JPjjVR6d6dKoPTvWBzI6dNGZ9C_GP_H_pG9CXevA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092573347</pqid></control><display><type>article</type><title>Modified Legendre Operational Matrix of Differentiation for Solving Strongly Nonlinear Dynamical Systems</title><source>Springer Nature - Complete Springer Journals</source><creator>Alomari, A. K. ; Syam, Muhammed ; Al-Jamal, Mohammad F. ; Bataineh, A. Sami ; Anakira, N. R. ; Jameel, A. F.</creator><creatorcontrib>Alomari, A. K. ; Syam, Muhammed ; Al-Jamal, Mohammad F. ; Bataineh, A. Sami ; Anakira, N. R. ; Jameel, A. F.</creatorcontrib><description>Complex vibration phenomena appear so frequently in many engineering and physical experiments, and they are well modeled using nonlinear differential equations. However, contrary to the linear models, nonlinear models are difficult to analyze analytically or numerically and particularly for long-time spans. In this paper, we propose a novel method to provide approximate analytic solutions of an important class of nonlinear differential equations that describe the underdamped, overdamped, and oscillatory motions of massspring systems subjected to external excitations. The method is based on a novel modification of the Legendre operator matrix of differentiation technique which results in solutions that are accurate not only for short-time spans but also for long-time spans as well. We provide error analysis and present several examples to demonstrate the efficiency of the proposed method.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-018-0545-3</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Computational mathematics ; Computational Science and Engineering ; Differentiation ; Error analysis ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Nonlinear differential equations ; Nonlinear equations ; Nonlinear systems ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Theoretical</subject><ispartof>International journal of applied and computational mathematics, 2018-10, Vol.4 (5), p.1-13, Article 117</ispartof><rights>Springer Nature India Private Limited 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2313-46a28aff1e8ae1bff4e7fd65c271b7643cc31ffc32b48e2d9d4a73887b9eb6533</citedby><cites>FETCH-LOGICAL-c2313-46a28aff1e8ae1bff4e7fd65c271b7643cc31ffc32b48e2d9d4a73887b9eb6533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40819-018-0545-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40819-018-0545-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27913,27914,41477,42546,51308</link.rule.ids></links><search><creatorcontrib>Alomari, A. K.</creatorcontrib><creatorcontrib>Syam, Muhammed</creatorcontrib><creatorcontrib>Al-Jamal, Mohammad F.</creatorcontrib><creatorcontrib>Bataineh, A. Sami</creatorcontrib><creatorcontrib>Anakira, N. R.</creatorcontrib><creatorcontrib>Jameel, A. F.</creatorcontrib><title>Modified Legendre Operational Matrix of Differentiation for Solving Strongly Nonlinear Dynamical Systems</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>Complex vibration phenomena appear so frequently in many engineering and physical experiments, and they are well modeled using nonlinear differential equations. However, contrary to the linear models, nonlinear models are difficult to analyze analytically or numerically and particularly for long-time spans. In this paper, we propose a novel method to provide approximate analytic solutions of an important class of nonlinear differential equations that describe the underdamped, overdamped, and oscillatory motions of massspring systems subjected to external excitations. The method is based on a novel modification of the Legendre operator matrix of differentiation technique which results in solutions that are accurate not only for short-time spans but also for long-time spans as well. We provide error analysis and present several examples to demonstrate the efficiency of the proposed method.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Differentiation</subject><subject>Error analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Theoretical</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EElXpB7CzxDrgV2JniVpeUqGLwtpyknFwldrFThH5e1KKxIrVjDT3HmkOQpeUXFNC5E0SRNEyI1RlJBd5xk_QhNGyzHJZFqfjzsW4U8LP0SylDSGEUSEJUxP0_hwaZx00eAkt-CYCXu0gmt4Fbzr8bProvnCweOGshQi-dz83bEPE69B9Ot_idR-Db7sBvwTfOQ8m4sXgzdbVI2I9pB626QKdWdMlmP3OKXq7v3udP2bL1cPT_HaZ1YxTnonCMGWspaAM0MpaAdI2RV4zSStZCF7XnFpbc1YJBawpG2EkV0pWJVRFzvkUXR25uxg-9pB6vQn7OP6SNCMlyyXnQo4pekzVMaQUwepddFsTB02JPjjVR6d6dKoPTvWBzI6dNGZ9C_GP_H_pG9CXevA</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Alomari, A. K.</creator><creator>Syam, Muhammed</creator><creator>Al-Jamal, Mohammad F.</creator><creator>Bataineh, A. Sami</creator><creator>Anakira, N. R.</creator><creator>Jameel, A. F.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181001</creationdate><title>Modified Legendre Operational Matrix of Differentiation for Solving Strongly Nonlinear Dynamical Systems</title><author>Alomari, A. K. ; Syam, Muhammed ; Al-Jamal, Mohammad F. ; Bataineh, A. Sami ; Anakira, N. R. ; Jameel, A. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2313-46a28aff1e8ae1bff4e7fd65c271b7643cc31ffc32b48e2d9d4a73887b9eb6533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Differentiation</topic><topic>Error analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alomari, A. K.</creatorcontrib><creatorcontrib>Syam, Muhammed</creatorcontrib><creatorcontrib>Al-Jamal, Mohammad F.</creatorcontrib><creatorcontrib>Bataineh, A. Sami</creatorcontrib><creatorcontrib>Anakira, N. R.</creatorcontrib><creatorcontrib>Jameel, A. F.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alomari, A. K.</au><au>Syam, Muhammed</au><au>Al-Jamal, Mohammad F.</au><au>Bataineh, A. Sami</au><au>Anakira, N. R.</au><au>Jameel, A. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified Legendre Operational Matrix of Differentiation for Solving Strongly Nonlinear Dynamical Systems</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>4</volume><issue>5</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>117</artnum><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>Complex vibration phenomena appear so frequently in many engineering and physical experiments, and they are well modeled using nonlinear differential equations. However, contrary to the linear models, nonlinear models are difficult to analyze analytically or numerically and particularly for long-time spans. In this paper, we propose a novel method to provide approximate analytic solutions of an important class of nonlinear differential equations that describe the underdamped, overdamped, and oscillatory motions of massspring systems subjected to external excitations. The method is based on a novel modification of the Legendre operator matrix of differentiation technique which results in solutions that are accurate not only for short-time spans but also for long-time spans as well. We provide error analysis and present several examples to demonstrate the efficiency of the proposed method.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-018-0545-3</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2349-5103
ispartof International journal of applied and computational mathematics, 2018-10, Vol.4 (5), p.1-13, Article 117
issn 2349-5103
2199-5796
language eng
recordid cdi_proquest_journals_2092573347
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Applied mathematics
Computational mathematics
Computational Science and Engineering
Differentiation
Error analysis
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mathematics
Mathematics and Statistics
Nonlinear differential equations
Nonlinear equations
Nonlinear systems
Nuclear Energy
Operations Research/Decision Theory
Original Paper
Theoretical
title Modified Legendre Operational Matrix of Differentiation for Solving Strongly Nonlinear Dynamical Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20Legendre%20Operational%20Matrix%20of%20Differentiation%20for%20Solving%20Strongly%20Nonlinear%20Dynamical%20Systems&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Alomari,%20A.%20K.&rft.date=2018-10-01&rft.volume=4&rft.issue=5&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=117&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-018-0545-3&rft_dat=%3Cproquest_cross%3E2092573347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092573347&rft_id=info:pmid/&rfr_iscdi=true