Modeling and trajectory tracking control of a two-wheeled mobile robot: Gibbs–Appell and prediction-based approaches
This study deals with the problem of trajectory tracking of wheeled mobile robots (WMR's) under non-holonomic constraints and in the presence of model uncertainties. To solve this problem, the kinematic and dynamic models of a WMR are first derived by applying the recursive Gibbs–Appell method....
Gespeichert in:
Veröffentlicht in: | Robotica 2018-10, Vol.36 (10), p.1551-1570 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1570 |
---|---|
container_issue | 10 |
container_start_page | 1551 |
container_title | Robotica |
container_volume | 36 |
creator | Mirzaeinejad, Hossein Shafei, Ali Mohammad |
description | This study deals with the problem of trajectory tracking of wheeled mobile robots (WMR's) under non-holonomic constraints and in the presence of model uncertainties. To solve this problem, the kinematic and dynamic models of a WMR are first derived by applying the recursive Gibbs–Appell method. Then, new kinematics- and dynamics-based multivariable controllers are analytically developed by using the predictive control approach. The control laws are optimally derived by minimizing a pointwise quadratic cost function for the predicted tracking errors of the WMR. The main feature of the obtained closed-form control laws is that online optimization is not needed for their implementation. The prediction time, as a free parameter in the control laws, makes it possible to achieve a compromise between tracking accuracy and implementable control inputs. Finally, the performance of the proposed controller is compared with that of a sliding mode controller, reported in the literature, through simulations of some trajectory tracking maneuvers. |
doi_str_mv | 10.1017/S0263574718000565 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2092569090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263574718000565</cupid><sourcerecordid>2092569090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-584051ca80819269d0ab49e23bfaa65289fd6460dfefa5e85fa225d5026e04853</originalsourceid><addsrcrecordid>eNp1UEtOwzAQtRBIlMIB2EViHRgnseOwqyp-UhELYB059rhNSeNgu6DuuAM35CQktBILxGpG836aR8gphXMKNL94hISnLM9yKgCAcbZHRjTjRSw4F_tkNMDxgB-SI--XADSlWT4ib_dWY1O380i2OgpOLlEF6zbDql6Gu7JtcLaJrIlkFN5t_L5AbFBHK1vVDUbOVjZcRjd1Vfmvj89J12HT_Lh1DnWtQm3buJK-V8iuc1aqBfpjcmBk4_FkN8fk-frqaXobzx5u7qaTWaxSmoeYiQwYVVKAoEXCCw2yygpM0spIyVkiCqN5xkEbNJKhYEYmCdOs_xYhEywdk7Otbx_8ukYfyqVdu7aPLBMoEsYLKKBn0S1LOeu9Q1N2rl5JtykplEO95Z96e02608hV5Wo9x1_r_1XfGX5-Jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092569090</pqid></control><display><type>article</type><title>Modeling and trajectory tracking control of a two-wheeled mobile robot: Gibbs–Appell and prediction-based approaches</title><source>Cambridge University Press Journals Complete</source><creator>Mirzaeinejad, Hossein ; Shafei, Ali Mohammad</creator><creatorcontrib>Mirzaeinejad, Hossein ; Shafei, Ali Mohammad</creatorcontrib><description>This study deals with the problem of trajectory tracking of wheeled mobile robots (WMR's) under non-holonomic constraints and in the presence of model uncertainties. To solve this problem, the kinematic and dynamic models of a WMR are first derived by applying the recursive Gibbs–Appell method. Then, new kinematics- and dynamics-based multivariable controllers are analytically developed by using the predictive control approach. The control laws are optimally derived by minimizing a pointwise quadratic cost function for the predicted tracking errors of the WMR. The main feature of the obtained closed-form control laws is that online optimization is not needed for their implementation. The prediction time, as a free parameter in the control laws, makes it possible to achieve a compromise between tracking accuracy and implementable control inputs. Finally, the performance of the proposed controller is compared with that of a sliding mode controller, reported in the literature, through simulations of some trajectory tracking maneuvers.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S0263574718000565</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Computer simulation ; Constraint modelling ; Control systems ; Dynamic models ; Firearm laws & regulations ; Kinematics ; Maneuvers ; Multivariable control ; Predictive control ; Recursive methods ; Robots ; Sliding mode control ; Tracking control ; Tracking errors ; Trajectory control</subject><ispartof>Robotica, 2018-10, Vol.36 (10), p.1551-1570</ispartof><rights>Copyright © Cambridge University Press 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-584051ca80819269d0ab49e23bfaa65289fd6460dfefa5e85fa225d5026e04853</citedby><cites>FETCH-LOGICAL-c317t-584051ca80819269d0ab49e23bfaa65289fd6460dfefa5e85fa225d5026e04853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263574718000565/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Mirzaeinejad, Hossein</creatorcontrib><creatorcontrib>Shafei, Ali Mohammad</creatorcontrib><title>Modeling and trajectory tracking control of a two-wheeled mobile robot: Gibbs–Appell and prediction-based approaches</title><title>Robotica</title><addtitle>Robotica</addtitle><description>This study deals with the problem of trajectory tracking of wheeled mobile robots (WMR's) under non-holonomic constraints and in the presence of model uncertainties. To solve this problem, the kinematic and dynamic models of a WMR are first derived by applying the recursive Gibbs–Appell method. Then, new kinematics- and dynamics-based multivariable controllers are analytically developed by using the predictive control approach. The control laws are optimally derived by minimizing a pointwise quadratic cost function for the predicted tracking errors of the WMR. The main feature of the obtained closed-form control laws is that online optimization is not needed for their implementation. The prediction time, as a free parameter in the control laws, makes it possible to achieve a compromise between tracking accuracy and implementable control inputs. Finally, the performance of the proposed controller is compared with that of a sliding mode controller, reported in the literature, through simulations of some trajectory tracking maneuvers.</description><subject>Computer simulation</subject><subject>Constraint modelling</subject><subject>Control systems</subject><subject>Dynamic models</subject><subject>Firearm laws & regulations</subject><subject>Kinematics</subject><subject>Maneuvers</subject><subject>Multivariable control</subject><subject>Predictive control</subject><subject>Recursive methods</subject><subject>Robots</subject><subject>Sliding mode control</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>Trajectory control</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UEtOwzAQtRBIlMIB2EViHRgnseOwqyp-UhELYB059rhNSeNgu6DuuAM35CQktBILxGpG836aR8gphXMKNL94hISnLM9yKgCAcbZHRjTjRSw4F_tkNMDxgB-SI--XADSlWT4ib_dWY1O380i2OgpOLlEF6zbDql6Gu7JtcLaJrIlkFN5t_L5AbFBHK1vVDUbOVjZcRjd1Vfmvj89J12HT_Lh1DnWtQm3buJK-V8iuc1aqBfpjcmBk4_FkN8fk-frqaXobzx5u7qaTWaxSmoeYiQwYVVKAoEXCCw2yygpM0spIyVkiCqN5xkEbNJKhYEYmCdOs_xYhEywdk7Otbx_8ukYfyqVdu7aPLBMoEsYLKKBn0S1LOeu9Q1N2rl5JtykplEO95Z96e02608hV5Wo9x1_r_1XfGX5-Jg</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Mirzaeinejad, Hossein</creator><creator>Shafei, Ali Mohammad</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201810</creationdate><title>Modeling and trajectory tracking control of a two-wheeled mobile robot: Gibbs–Appell and prediction-based approaches</title><author>Mirzaeinejad, Hossein ; Shafei, Ali Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-584051ca80819269d0ab49e23bfaa65289fd6460dfefa5e85fa225d5026e04853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Constraint modelling</topic><topic>Control systems</topic><topic>Dynamic models</topic><topic>Firearm laws & regulations</topic><topic>Kinematics</topic><topic>Maneuvers</topic><topic>Multivariable control</topic><topic>Predictive control</topic><topic>Recursive methods</topic><topic>Robots</topic><topic>Sliding mode control</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>Trajectory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirzaeinejad, Hossein</creatorcontrib><creatorcontrib>Shafei, Ali Mohammad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mirzaeinejad, Hossein</au><au>Shafei, Ali Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and trajectory tracking control of a two-wheeled mobile robot: Gibbs–Appell and prediction-based approaches</atitle><jtitle>Robotica</jtitle><addtitle>Robotica</addtitle><date>2018-10</date><risdate>2018</risdate><volume>36</volume><issue>10</issue><spage>1551</spage><epage>1570</epage><pages>1551-1570</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>This study deals with the problem of trajectory tracking of wheeled mobile robots (WMR's) under non-holonomic constraints and in the presence of model uncertainties. To solve this problem, the kinematic and dynamic models of a WMR are first derived by applying the recursive Gibbs–Appell method. Then, new kinematics- and dynamics-based multivariable controllers are analytically developed by using the predictive control approach. The control laws are optimally derived by minimizing a pointwise quadratic cost function for the predicted tracking errors of the WMR. The main feature of the obtained closed-form control laws is that online optimization is not needed for their implementation. The prediction time, as a free parameter in the control laws, makes it possible to achieve a compromise between tracking accuracy and implementable control inputs. Finally, the performance of the proposed controller is compared with that of a sliding mode controller, reported in the literature, through simulations of some trajectory tracking maneuvers.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263574718000565</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-5747 |
ispartof | Robotica, 2018-10, Vol.36 (10), p.1551-1570 |
issn | 0263-5747 1469-8668 |
language | eng |
recordid | cdi_proquest_journals_2092569090 |
source | Cambridge University Press Journals Complete |
subjects | Computer simulation Constraint modelling Control systems Dynamic models Firearm laws & regulations Kinematics Maneuvers Multivariable control Predictive control Recursive methods Robots Sliding mode control Tracking control Tracking errors Trajectory control |
title | Modeling and trajectory tracking control of a two-wheeled mobile robot: Gibbs–Appell and prediction-based approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20trajectory%20tracking%20control%20of%20a%20two-wheeled%20mobile%20robot:%20Gibbs%E2%80%93Appell%20and%20prediction-based%20approaches&rft.jtitle=Robotica&rft.au=Mirzaeinejad,%20Hossein&rft.date=2018-10&rft.volume=36&rft.issue=10&rft.spage=1551&rft.epage=1570&rft.pages=1551-1570&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S0263574718000565&rft_dat=%3Cproquest_cross%3E2092569090%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092569090&rft_id=info:pmid/&rft_cupid=10_1017_S0263574718000565&rfr_iscdi=true |