Algebra of Deformed Differential Operators and Induced Integrable Toda Field Theory

We build in this paper the algebra of q-deformed pseudo-differential operators shown to be an essential step towards setting a q-deformed integrability program. In fact, using the results of this q-deformed algebra, we derive the q-analogues of the generalized KdV hierarchy. We focus in particular o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2003-08
Hauptverfasser: Benkaddour, I, Hssaini, M, Kessabi, M, Maroufi, B, Sedra, M B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We build in this paper the algebra of q-deformed pseudo-differential operators shown to be an essential step towards setting a q-deformed integrability program. In fact, using the results of this q-deformed algebra, we derive the q-analogues of the generalized KdV hierarchy. We focus in particular on the first leading orders of this q-deformed hierarchy namely the q-KdV and q-Boussinesq integrable systems. We present also the q-generalization of the conformal transformations of the currents and discuss the primarity condition of the fields by using the Volterra gauge group transformations for the q-covariant Lax operators. An induced su(n)-Toda(su(2)-Liouville) field theory construction is discussed and other important features are presented.
ISSN:2331-8422