Relating Coastal Geomorphology to Marine Benthic Biodiversity
Herkül, K.; Aps, R.; Lokko, K.; Peterson, A., and Tõnisson, H., 2018. Relating Coastal Geomorphology to Marine Benthic Biodiversity. In: Shim, J.-S.; Chun, I., and Lim, H.S. (eds.), Proceedings from the International Coastal Symposium (ICS) 2018 (Busan, Republic of Korea). Journal of Coastal Researc...
Gespeichert in:
Veröffentlicht in: | Journal of coastal research 2018-05, Vol.85 (sp1), p.366-370 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 370 |
---|---|
container_issue | sp1 |
container_start_page | 366 |
container_title | Journal of coastal research |
container_volume | 85 |
creator | Herkül, Kristjan Aps, Robert Lokko, Külli Peterson, Anneliis Tõnisson, Hannes |
description | Herkül, K.; Aps, R.; Lokko, K.; Peterson, A., and Tõnisson, H., 2018. Relating Coastal Geomorphology to Marine Benthic Biodiversity. In: Shim, J.-S.; Chun, I., and Lim, H.S. (eds.), Proceedings from the International Coastal Symposium (ICS) 2018 (Busan, Republic of Korea). Journal of Coastal Research, Special Issue No. 85, pp. 366–370. Coconut Creek (Florida), ISSN 0749-0208. Coastal geomorphology determines the essential environmental characteristics, such as substrate type and stability, terrestrial water regime and underwater hydrodynamics, that form the basic abiotic settings for the biota. While the importance of coastal geomorphology in determining the patterns of biological communities is relatively well studied on the terrestrial side of the shoreline, the respective relationships have been rarely studied seaward from the shoreline. Therefore, we aimed to fill this research gap by relating coastal geomorphology to marine benthic biodiversity. We studied the variability of species richness of macroscopic seabed fauna and flora along different shore geomorphic types in the Gulf of Finland, Baltic Sea. The shore was classified into nine geomorphological types. Spatial buffers of sizes 125–1000 m (hereafter “scales”) were formed around each segment of shoreline and mean values of faunal, floral, and total species richness were calculated in each segment and scale. ANOVA revealed that biodiversity significantly differed between the shore types. Generally, the biodiversity was the highest among the types “Scraps and steep slopes in sand”, “Exposed rocky cliffs with boulder talus base” and “Sheltered rocky rubble shores” and the lowest among the type “Exposed, solid man-made structures”. Smaller spatial scales hosted higher biodiversity but the interaction between shore type and scale was not statistically significant. To conclude, the coastal geomorphology reflects the general patterns of underwater biodiversity, and thus, the information of shore geomorphic types can be used in coastal management and oil pollution combating prioritization in the case when the information of underwater biota is not available. |
doi_str_mv | 10.2112/SI85-074.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2092493349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26488241</jstor_id><sourcerecordid>26488241</sourcerecordid><originalsourceid>FETCH-LOGICAL-b314t-f2be1b3e4aa3429d38e93ff886cc24a931d0a1ed11b4ba66999643ae073676213</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKcX70LBiwideUmaJgcPbugcTAR_nEPapltG18wkE_bf21Lx6OHx4H0_fB98ELoEPCEA5O59IbIU52wCR2gEWQZphik_RqPuJlNMsDhFZyFsMAYuWD5C92-m0dG2q2TmdIi6SebGbZ3frV3jVockuuRFe9uaZGrauLZlMrWust_GBxsP5-ik1k0wF797jD6fHj9mz-nydb6YPSzTggKLaU0KAwU1TGvKiKyoMJLWtRC8LAnTkkKFNZgKoGCF5lxKyRnVBueU55wAHaProXfn3dfehKg2bu_b7qUiWBImKe1mjG4HqvQuBG9qtfN2q_1BAVa9HtXrUZ0K1VdeDfAmROf_SMKZEIT1-c2QF9a51vxX9QN7aGys</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092493349</pqid></control><display><type>article</type><title>Relating Coastal Geomorphology to Marine Benthic Biodiversity</title><source>Jstor Complete Legacy</source><creator>Herkül, Kristjan ; Aps, Robert ; Lokko, Külli ; Peterson, Anneliis ; Tõnisson, Hannes</creator><creatorcontrib>Herkül, Kristjan ; Aps, Robert ; Lokko, Külli ; Peterson, Anneliis ; Tõnisson, Hannes</creatorcontrib><description>Herkül, K.; Aps, R.; Lokko, K.; Peterson, A., and Tõnisson, H., 2018. Relating Coastal Geomorphology to Marine Benthic Biodiversity. In: Shim, J.-S.; Chun, I., and Lim, H.S. (eds.), Proceedings from the International Coastal Symposium (ICS) 2018 (Busan, Republic of Korea). Journal of Coastal Research, Special Issue No. 85, pp. 366–370. Coconut Creek (Florida), ISSN 0749-0208. Coastal geomorphology determines the essential environmental characteristics, such as substrate type and stability, terrestrial water regime and underwater hydrodynamics, that form the basic abiotic settings for the biota. While the importance of coastal geomorphology in determining the patterns of biological communities is relatively well studied on the terrestrial side of the shoreline, the respective relationships have been rarely studied seaward from the shoreline. Therefore, we aimed to fill this research gap by relating coastal geomorphology to marine benthic biodiversity. We studied the variability of species richness of macroscopic seabed fauna and flora along different shore geomorphic types in the Gulf of Finland, Baltic Sea. The shore was classified into nine geomorphological types. Spatial buffers of sizes 125–1000 m (hereafter “scales”) were formed around each segment of shoreline and mean values of faunal, floral, and total species richness were calculated in each segment and scale. ANOVA revealed that biodiversity significantly differed between the shore types. Generally, the biodiversity was the highest among the types “Scraps and steep slopes in sand”, “Exposed rocky cliffs with boulder talus base” and “Sheltered rocky rubble shores” and the lowest among the type “Exposed, solid man-made structures”. Smaller spatial scales hosted higher biodiversity but the interaction between shore type and scale was not statistically significant. To conclude, the coastal geomorphology reflects the general patterns of underwater biodiversity, and thus, the information of shore geomorphic types can be used in coastal management and oil pollution combating prioritization in the case when the information of underwater biota is not available.</description><identifier>ISSN: 0749-0208</identifier><identifier>EISSN: 1551-5036</identifier><identifier>DOI: 10.2112/SI85-074.1</identifier><language>eng</language><publisher>Fort Lauderdale: Coastal Education and Research Foundation</publisher><subject>Baltic Sea ; benthos ; Biodiversity ; Biota ; Cliffs ; COASTAL BIOLOGY AND ECOLOGY ; Coastal management ; Coastal morphology ; Coastal zone management ; Coasts ; Ecology ; Ecosystems ; Environmental economics ; environmental sensitivity ; Flora ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Geomorphology ; Human-made structures ; Hydrodynamics ; Ocean floor ; Oil pollution ; Oil spills ; Plants ; Population growth ; shore geomorphic types ; Shoreline protection ; Shorelines ; Shores ; Slope ; Species richness ; Stability ; Statistical analysis ; Substrates ; Underwater ; Underwater habitats ; Variance analysis ; Water pollution</subject><ispartof>Journal of coastal research, 2018-05, Vol.85 (sp1), p.366-370</ispartof><rights>Coastal Education and Research Foundation, Inc. 2018</rights><rights>Copyright Allen Press Publishing Services 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b314t-f2be1b3e4aa3429d38e93ff886cc24a931d0a1ed11b4ba66999643ae073676213</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26488241$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26488241$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27903,27904,57996,58229</link.rule.ids></links><search><creatorcontrib>Herkül, Kristjan</creatorcontrib><creatorcontrib>Aps, Robert</creatorcontrib><creatorcontrib>Lokko, Külli</creatorcontrib><creatorcontrib>Peterson, Anneliis</creatorcontrib><creatorcontrib>Tõnisson, Hannes</creatorcontrib><title>Relating Coastal Geomorphology to Marine Benthic Biodiversity</title><title>Journal of coastal research</title><description>Herkül, K.; Aps, R.; Lokko, K.; Peterson, A., and Tõnisson, H., 2018. Relating Coastal Geomorphology to Marine Benthic Biodiversity. In: Shim, J.-S.; Chun, I., and Lim, H.S. (eds.), Proceedings from the International Coastal Symposium (ICS) 2018 (Busan, Republic of Korea). Journal of Coastal Research, Special Issue No. 85, pp. 366–370. Coconut Creek (Florida), ISSN 0749-0208. Coastal geomorphology determines the essential environmental characteristics, such as substrate type and stability, terrestrial water regime and underwater hydrodynamics, that form the basic abiotic settings for the biota. While the importance of coastal geomorphology in determining the patterns of biological communities is relatively well studied on the terrestrial side of the shoreline, the respective relationships have been rarely studied seaward from the shoreline. Therefore, we aimed to fill this research gap by relating coastal geomorphology to marine benthic biodiversity. We studied the variability of species richness of macroscopic seabed fauna and flora along different shore geomorphic types in the Gulf of Finland, Baltic Sea. The shore was classified into nine geomorphological types. Spatial buffers of sizes 125–1000 m (hereafter “scales”) were formed around each segment of shoreline and mean values of faunal, floral, and total species richness were calculated in each segment and scale. ANOVA revealed that biodiversity significantly differed between the shore types. Generally, the biodiversity was the highest among the types “Scraps and steep slopes in sand”, “Exposed rocky cliffs with boulder talus base” and “Sheltered rocky rubble shores” and the lowest among the type “Exposed, solid man-made structures”. Smaller spatial scales hosted higher biodiversity but the interaction between shore type and scale was not statistically significant. To conclude, the coastal geomorphology reflects the general patterns of underwater biodiversity, and thus, the information of shore geomorphic types can be used in coastal management and oil pollution combating prioritization in the case when the information of underwater biota is not available.</description><subject>Baltic Sea</subject><subject>benthos</subject><subject>Biodiversity</subject><subject>Biota</subject><subject>Cliffs</subject><subject>COASTAL BIOLOGY AND ECOLOGY</subject><subject>Coastal management</subject><subject>Coastal morphology</subject><subject>Coastal zone management</subject><subject>Coasts</subject><subject>Ecology</subject><subject>Ecosystems</subject><subject>Environmental economics</subject><subject>environmental sensitivity</subject><subject>Flora</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Geomorphology</subject><subject>Human-made structures</subject><subject>Hydrodynamics</subject><subject>Ocean floor</subject><subject>Oil pollution</subject><subject>Oil spills</subject><subject>Plants</subject><subject>Population growth</subject><subject>shore geomorphic types</subject><subject>Shoreline protection</subject><subject>Shorelines</subject><subject>Shores</subject><subject>Slope</subject><subject>Species richness</subject><subject>Stability</subject><subject>Statistical analysis</subject><subject>Substrates</subject><subject>Underwater</subject><subject>Underwater habitats</subject><subject>Variance analysis</subject><subject>Water pollution</subject><issn>0749-0208</issn><issn>1551-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM9LwzAUx4MoOKcX70LBiwideUmaJgcPbugcTAR_nEPapltG18wkE_bf21Lx6OHx4H0_fB98ELoEPCEA5O59IbIU52wCR2gEWQZphik_RqPuJlNMsDhFZyFsMAYuWD5C92-m0dG2q2TmdIi6SebGbZ3frV3jVockuuRFe9uaZGrauLZlMrWust_GBxsP5-ik1k0wF797jD6fHj9mz-nydb6YPSzTggKLaU0KAwU1TGvKiKyoMJLWtRC8LAnTkkKFNZgKoGCF5lxKyRnVBueU55wAHaProXfn3dfehKg2bu_b7qUiWBImKe1mjG4HqvQuBG9qtfN2q_1BAVa9HtXrUZ0K1VdeDfAmROf_SMKZEIT1-c2QF9a51vxX9QN7aGys</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Herkül, Kristjan</creator><creator>Aps, Robert</creator><creator>Lokko, Külli</creator><creator>Peterson, Anneliis</creator><creator>Tõnisson, Hannes</creator><general>Coastal Education and Research Foundation</general><general>COASTAL EDUCATION & RESEARCH FOUNDATION, INC. [CERF]</general><general>Allen Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TN</scope><scope>7U5</scope><scope>7U9</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7N</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20180501</creationdate><title>Relating Coastal Geomorphology to Marine Benthic Biodiversity</title><author>Herkül, Kristjan ; Aps, Robert ; Lokko, Külli ; Peterson, Anneliis ; Tõnisson, Hannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b314t-f2be1b3e4aa3429d38e93ff886cc24a931d0a1ed11b4ba66999643ae073676213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Baltic Sea</topic><topic>benthos</topic><topic>Biodiversity</topic><topic>Biota</topic><topic>Cliffs</topic><topic>COASTAL BIOLOGY AND ECOLOGY</topic><topic>Coastal management</topic><topic>Coastal morphology</topic><topic>Coastal zone management</topic><topic>Coasts</topic><topic>Ecology</topic><topic>Ecosystems</topic><topic>Environmental economics</topic><topic>environmental sensitivity</topic><topic>Flora</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Geomorphology</topic><topic>Human-made structures</topic><topic>Hydrodynamics</topic><topic>Ocean floor</topic><topic>Oil pollution</topic><topic>Oil spills</topic><topic>Plants</topic><topic>Population growth</topic><topic>shore geomorphic types</topic><topic>Shoreline protection</topic><topic>Shorelines</topic><topic>Shores</topic><topic>Slope</topic><topic>Species richness</topic><topic>Stability</topic><topic>Statistical analysis</topic><topic>Substrates</topic><topic>Underwater</topic><topic>Underwater habitats</topic><topic>Variance analysis</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herkül, Kristjan</creatorcontrib><creatorcontrib>Aps, Robert</creatorcontrib><creatorcontrib>Lokko, Külli</creatorcontrib><creatorcontrib>Peterson, Anneliis</creatorcontrib><creatorcontrib>Tõnisson, Hannes</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of coastal research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herkül, Kristjan</au><au>Aps, Robert</au><au>Lokko, Külli</au><au>Peterson, Anneliis</au><au>Tõnisson, Hannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relating Coastal Geomorphology to Marine Benthic Biodiversity</atitle><jtitle>Journal of coastal research</jtitle><date>2018-05-01</date><risdate>2018</risdate><volume>85</volume><issue>sp1</issue><spage>366</spage><epage>370</epage><pages>366-370</pages><issn>0749-0208</issn><eissn>1551-5036</eissn><abstract>Herkül, K.; Aps, R.; Lokko, K.; Peterson, A., and Tõnisson, H., 2018. Relating Coastal Geomorphology to Marine Benthic Biodiversity. In: Shim, J.-S.; Chun, I., and Lim, H.S. (eds.), Proceedings from the International Coastal Symposium (ICS) 2018 (Busan, Republic of Korea). Journal of Coastal Research, Special Issue No. 85, pp. 366–370. Coconut Creek (Florida), ISSN 0749-0208. Coastal geomorphology determines the essential environmental characteristics, such as substrate type and stability, terrestrial water regime and underwater hydrodynamics, that form the basic abiotic settings for the biota. While the importance of coastal geomorphology in determining the patterns of biological communities is relatively well studied on the terrestrial side of the shoreline, the respective relationships have been rarely studied seaward from the shoreline. Therefore, we aimed to fill this research gap by relating coastal geomorphology to marine benthic biodiversity. We studied the variability of species richness of macroscopic seabed fauna and flora along different shore geomorphic types in the Gulf of Finland, Baltic Sea. The shore was classified into nine geomorphological types. Spatial buffers of sizes 125–1000 m (hereafter “scales”) were formed around each segment of shoreline and mean values of faunal, floral, and total species richness were calculated in each segment and scale. ANOVA revealed that biodiversity significantly differed between the shore types. Generally, the biodiversity was the highest among the types “Scraps and steep slopes in sand”, “Exposed rocky cliffs with boulder talus base” and “Sheltered rocky rubble shores” and the lowest among the type “Exposed, solid man-made structures”. Smaller spatial scales hosted higher biodiversity but the interaction between shore type and scale was not statistically significant. To conclude, the coastal geomorphology reflects the general patterns of underwater biodiversity, and thus, the information of shore geomorphic types can be used in coastal management and oil pollution combating prioritization in the case when the information of underwater biota is not available.</abstract><cop>Fort Lauderdale</cop><pub>Coastal Education and Research Foundation</pub><doi>10.2112/SI85-074.1</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-0208 |
ispartof | Journal of coastal research, 2018-05, Vol.85 (sp1), p.366-370 |
issn | 0749-0208 1551-5036 |
language | eng |
recordid | cdi_proquest_journals_2092493349 |
source | Jstor Complete Legacy |
subjects | Baltic Sea benthos Biodiversity Biota Cliffs COASTAL BIOLOGY AND ECOLOGY Coastal management Coastal morphology Coastal zone management Coasts Ecology Ecosystems Environmental economics environmental sensitivity Flora Fluid dynamics Fluid flow Fluid mechanics Geomorphology Human-made structures Hydrodynamics Ocean floor Oil pollution Oil spills Plants Population growth shore geomorphic types Shoreline protection Shorelines Shores Slope Species richness Stability Statistical analysis Substrates Underwater Underwater habitats Variance analysis Water pollution |
title | Relating Coastal Geomorphology to Marine Benthic Biodiversity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relating%20Coastal%20Geomorphology%20to%20Marine%20Benthic%20Biodiversity&rft.jtitle=Journal%20of%20coastal%20research&rft.au=Herk%C3%BCl,%20Kristjan&rft.date=2018-05-01&rft.volume=85&rft.issue=sp1&rft.spage=366&rft.epage=370&rft.pages=366-370&rft.issn=0749-0208&rft.eissn=1551-5036&rft_id=info:doi/10.2112/SI85-074.1&rft_dat=%3Cjstor_proqu%3E26488241%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092493349&rft_id=info:pmid/&rft_jstor_id=26488241&rfr_iscdi=true |