Equation of state for shock-compressed porous molybdenum from first-principles mean-field potential calculations

The Hugoniot curves for shock-compressed molybdenum with initial porosities of 1.0, 1.26, 1.83, and 2.31 are theoretically investigated. The method of calculations combines the first-principles treatment for zero- and finite-temperature electronic contribution and the mean-field-potential approach f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2007-08
Hauptverfasser: Zhang, Qili, Zhang, Ping, Zhang, Gongmu, Liu, Haifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhang, Qili
Zhang, Ping
Zhang, Gongmu
Liu, Haifeng
description The Hugoniot curves for shock-compressed molybdenum with initial porosities of 1.0, 1.26, 1.83, and 2.31 are theoretically investigated. The method of calculations combines the first-principles treatment for zero- and finite-temperature electronic contribution and the mean-field-potential approach for the ion-thermal contribution to the total free energy. Our calculated results reproduce the Hugoniot properties of porous molybdenum quite well. At low porosity, in particular, the calculations show a complete agreement with the experimental measurements over the full range of data. For the two large porosity values of 1.83 and 2.31, our results are well in accord with the experimental data points up to the particle velocity of 3.5 km/s, and tend to overestimate the shock-wave velocity and Hugoniot pressure when further increasing the particle velocity. In addition, the temperature along the principal Hugoniot is also extensively investigated for porous molybdenum.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2092490862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092490862</sourcerecordid><originalsourceid>FETCH-proquest_journals_20924908623</originalsourceid><addsrcrecordid>eNqNjUEKwjAURIMgWNQ7BFwXYlprXYviAdxLTH8wNc1P85OFt7eKB3Azs5g3MzNWyKralm0t5YKtiXohhGz2crerChZOY1bJoudoOCWVgBuMnB6on6XGIUQggo4HjJiJD-he9w58HriJOImNlMoQrdc2OJgAUL40FtynksAnqxzXyunsvje0YnOjHMH650u2OZ-ux8s0gmMGSrcec_RTdJPiIOuDaBtZ_Ue9AbUnTHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092490862</pqid></control><display><type>article</type><title>Equation of state for shock-compressed porous molybdenum from first-principles mean-field potential calculations</title><source>Free E- Journals</source><creator>Zhang, Qili ; Zhang, Ping ; Zhang, Gongmu ; Liu, Haifeng</creator><creatorcontrib>Zhang, Qili ; Zhang, Ping ; Zhang, Gongmu ; Liu, Haifeng</creatorcontrib><description>The Hugoniot curves for shock-compressed molybdenum with initial porosities of 1.0, 1.26, 1.83, and 2.31 are theoretically investigated. The method of calculations combines the first-principles treatment for zero- and finite-temperature electronic contribution and the mean-field-potential approach for the ion-thermal contribution to the total free energy. Our calculated results reproduce the Hugoniot properties of porous molybdenum quite well. At low porosity, in particular, the calculations show a complete agreement with the experimental measurements over the full range of data. For the two large porosity values of 1.83 and 2.31, our results are well in accord with the experimental data points up to the particle velocity of 3.5 km/s, and tend to overestimate the shock-wave velocity and Hugoniot pressure when further increasing the particle velocity. In addition, the temperature along the principal Hugoniot is also extensively investigated for porous molybdenum.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data points ; Equations of state ; First principles ; Free energy ; Hugoniot curves ; Mathematical analysis ; Molybdenum ; Porosity ; Shock waves</subject><ispartof>arXiv.org, 2007-08</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/0708.3130.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Zhang, Qili</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Zhang, Gongmu</creatorcontrib><creatorcontrib>Liu, Haifeng</creatorcontrib><title>Equation of state for shock-compressed porous molybdenum from first-principles mean-field potential calculations</title><title>arXiv.org</title><description>The Hugoniot curves for shock-compressed molybdenum with initial porosities of 1.0, 1.26, 1.83, and 2.31 are theoretically investigated. The method of calculations combines the first-principles treatment for zero- and finite-temperature electronic contribution and the mean-field-potential approach for the ion-thermal contribution to the total free energy. Our calculated results reproduce the Hugoniot properties of porous molybdenum quite well. At low porosity, in particular, the calculations show a complete agreement with the experimental measurements over the full range of data. For the two large porosity values of 1.83 and 2.31, our results are well in accord with the experimental data points up to the particle velocity of 3.5 km/s, and tend to overestimate the shock-wave velocity and Hugoniot pressure when further increasing the particle velocity. In addition, the temperature along the principal Hugoniot is also extensively investigated for porous molybdenum.</description><subject>Data points</subject><subject>Equations of state</subject><subject>First principles</subject><subject>Free energy</subject><subject>Hugoniot curves</subject><subject>Mathematical analysis</subject><subject>Molybdenum</subject><subject>Porosity</subject><subject>Shock waves</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUEKwjAURIMgWNQ7BFwXYlprXYviAdxLTH8wNc1P85OFt7eKB3Azs5g3MzNWyKralm0t5YKtiXohhGz2crerChZOY1bJoudoOCWVgBuMnB6on6XGIUQggo4HjJiJD-he9w58HriJOImNlMoQrdc2OJgAUL40FtynksAnqxzXyunsvje0YnOjHMH650u2OZ-ux8s0gmMGSrcec_RTdJPiIOuDaBtZ_Ue9AbUnTHA</recordid><startdate>20070823</startdate><enddate>20070823</enddate><creator>Zhang, Qili</creator><creator>Zhang, Ping</creator><creator>Zhang, Gongmu</creator><creator>Liu, Haifeng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20070823</creationdate><title>Equation of state for shock-compressed porous molybdenum from first-principles mean-field potential calculations</title><author>Zhang, Qili ; Zhang, Ping ; Zhang, Gongmu ; Liu, Haifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20924908623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Data points</topic><topic>Equations of state</topic><topic>First principles</topic><topic>Free energy</topic><topic>Hugoniot curves</topic><topic>Mathematical analysis</topic><topic>Molybdenum</topic><topic>Porosity</topic><topic>Shock waves</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qili</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Zhang, Gongmu</creatorcontrib><creatorcontrib>Liu, Haifeng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qili</au><au>Zhang, Ping</au><au>Zhang, Gongmu</au><au>Liu, Haifeng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Equation of state for shock-compressed porous molybdenum from first-principles mean-field potential calculations</atitle><jtitle>arXiv.org</jtitle><date>2007-08-23</date><risdate>2007</risdate><eissn>2331-8422</eissn><abstract>The Hugoniot curves for shock-compressed molybdenum with initial porosities of 1.0, 1.26, 1.83, and 2.31 are theoretically investigated. The method of calculations combines the first-principles treatment for zero- and finite-temperature electronic contribution and the mean-field-potential approach for the ion-thermal contribution to the total free energy. Our calculated results reproduce the Hugoniot properties of porous molybdenum quite well. At low porosity, in particular, the calculations show a complete agreement with the experimental measurements over the full range of data. For the two large porosity values of 1.83 and 2.31, our results are well in accord with the experimental data points up to the particle velocity of 3.5 km/s, and tend to overestimate the shock-wave velocity and Hugoniot pressure when further increasing the particle velocity. In addition, the temperature along the principal Hugoniot is also extensively investigated for porous molybdenum.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2007-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2092490862
source Free E- Journals
subjects Data points
Equations of state
First principles
Free energy
Hugoniot curves
Mathematical analysis
Molybdenum
Porosity
Shock waves
title Equation of state for shock-compressed porous molybdenum from first-principles mean-field potential calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Equation%20of%20state%20for%20shock-compressed%20porous%20molybdenum%20from%20first-principles%20mean-field%20potential%20calculations&rft.jtitle=arXiv.org&rft.au=Zhang,%20Qili&rft.date=2007-08-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2092490862%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092490862&rft_id=info:pmid/&rfr_iscdi=true