A windowed local fdr estimator providing higher resolution and robust thresholds

Motivation: In microarray analysis, special consideration must be given to the issues of multiple statistical tests and typically p-values are adjusted to control family-wise error rate (FWER) or false discovery rate (FDR). FDR metrics have been suggested for controlling false positives, however, ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2007-02
Hauptverfasser: Khan, Rishi L, Vadigepalli, Rajanikanth, Gao, Guang, Schwaber, James S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Khan, Rishi L
Vadigepalli, Rajanikanth
Gao, Guang
Schwaber, James S
description Motivation: In microarray analysis, special consideration must be given to the issues of multiple statistical tests and typically p-values are adjusted to control family-wise error rate (FWER) or false discovery rate (FDR). FDR metrics have been suggested for controlling false positives, however, genes with p-values close to the threshold typically have a higher chance of being false positives than genes with very low p-values. The local FDR (fdr) metric gives the number of false positives in the vicinity of a test statistic. We propose a new fdr estimator that uses windows instead of binsand define heuristics that use the fluctuations in the estimator to determine robust thresholds for classifying differential expression. Results: Our fdr approach estimates the false discovery rate within a window of p-values. We present heuristics that derive robust fdr thresholds such that a significant change in the fdr threshold yields a small change in the number of rejected hypotheses. We compare these thresholds with thresholds from other approaches using two simulated datasets and one cancer microarray dataset. In the latter, our estimator finds two robust thresholds. Since our fdr estimator is an extension of the FDR metric, it can be used with many FDR estimation methods. Availability: An R function implementing the proposed estimator is available at http://www.dbi.tju.edu/dbi/tools/fdr Contact: james.schwaber@jefferson.edu Supplementary Information: Supplementary figures and code are available at http://www.dbi.tju.edu/dbi/tools/fdr
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2092467217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092467217</sourcerecordid><originalsourceid>FETCH-proquest_journals_20924672173</originalsourceid><addsrcrecordid>eNqNjssKwjAURIMgWLT_cMF1ISat1aWI4tKF-xJN2qTEXM3D_r5Z-AGuBmYOh5mRgnG-qXY1YwtShjBSStm2ZU3DC3I9wGScxElJsPgQFnrpQYVoniKih5fHj5HGDaDNoJUHrwLaFA06EE6Cx3sKEaLOvUYrw4rMe2GDKn-5JOvz6Xa8VNn0TlncjZi8y1PH6J7V-cim5f9RX8EJP9U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092467217</pqid></control><display><type>article</type><title>A windowed local fdr estimator providing higher resolution and robust thresholds</title><source>Free E- Journals</source><creator>Khan, Rishi L ; Vadigepalli, Rajanikanth ; Gao, Guang ; Schwaber, James S</creator><creatorcontrib>Khan, Rishi L ; Vadigepalli, Rajanikanth ; Gao, Guang ; Schwaber, James S</creatorcontrib><description>Motivation: In microarray analysis, special consideration must be given to the issues of multiple statistical tests and typically p-values are adjusted to control family-wise error rate (FWER) or false discovery rate (FDR). FDR metrics have been suggested for controlling false positives, however, genes with p-values close to the threshold typically have a higher chance of being false positives than genes with very low p-values. The local FDR (fdr) metric gives the number of false positives in the vicinity of a test statistic. We propose a new fdr estimator that uses windows instead of binsand define heuristics that use the fluctuations in the estimator to determine robust thresholds for classifying differential expression. Results: Our fdr approach estimates the false discovery rate within a window of p-values. We present heuristics that derive robust fdr thresholds such that a significant change in the fdr threshold yields a small change in the number of rejected hypotheses. We compare these thresholds with thresholds from other approaches using two simulated datasets and one cancer microarray dataset. In the latter, our estimator finds two robust thresholds. Since our fdr estimator is an extension of the FDR metric, it can be used with many FDR estimation methods. Availability: An R function implementing the proposed estimator is available at http://www.dbi.tju.edu/dbi/tools/fdr Contact: james.schwaber@jefferson.edu Supplementary Information: Supplementary figures and code are available at http://www.dbi.tju.edu/dbi/tools/fdr</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Genes ; Robustness ; Statistical analysis ; Statistical tests ; Thresholds ; Variations</subject><ispartof>arXiv.org, 2007-02</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/q-bio/0702044.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Khan, Rishi L</creatorcontrib><creatorcontrib>Vadigepalli, Rajanikanth</creatorcontrib><creatorcontrib>Gao, Guang</creatorcontrib><creatorcontrib>Schwaber, James S</creatorcontrib><title>A windowed local fdr estimator providing higher resolution and robust thresholds</title><title>arXiv.org</title><description>Motivation: In microarray analysis, special consideration must be given to the issues of multiple statistical tests and typically p-values are adjusted to control family-wise error rate (FWER) or false discovery rate (FDR). FDR metrics have been suggested for controlling false positives, however, genes with p-values close to the threshold typically have a higher chance of being false positives than genes with very low p-values. The local FDR (fdr) metric gives the number of false positives in the vicinity of a test statistic. We propose a new fdr estimator that uses windows instead of binsand define heuristics that use the fluctuations in the estimator to determine robust thresholds for classifying differential expression. Results: Our fdr approach estimates the false discovery rate within a window of p-values. We present heuristics that derive robust fdr thresholds such that a significant change in the fdr threshold yields a small change in the number of rejected hypotheses. We compare these thresholds with thresholds from other approaches using two simulated datasets and one cancer microarray dataset. In the latter, our estimator finds two robust thresholds. Since our fdr estimator is an extension of the FDR metric, it can be used with many FDR estimation methods. Availability: An R function implementing the proposed estimator is available at http://www.dbi.tju.edu/dbi/tools/fdr Contact: james.schwaber@jefferson.edu Supplementary Information: Supplementary figures and code are available at http://www.dbi.tju.edu/dbi/tools/fdr</description><subject>Genes</subject><subject>Robustness</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Thresholds</subject><subject>Variations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjssKwjAURIMgWLT_cMF1ISat1aWI4tKF-xJN2qTEXM3D_r5Z-AGuBmYOh5mRgnG-qXY1YwtShjBSStm2ZU3DC3I9wGScxElJsPgQFnrpQYVoniKih5fHj5HGDaDNoJUHrwLaFA06EE6Cx3sKEaLOvUYrw4rMe2GDKn-5JOvz6Xa8VNn0TlncjZi8y1PH6J7V-cim5f9RX8EJP9U</recordid><startdate>20070222</startdate><enddate>20070222</enddate><creator>Khan, Rishi L</creator><creator>Vadigepalli, Rajanikanth</creator><creator>Gao, Guang</creator><creator>Schwaber, James S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20070222</creationdate><title>A windowed local fdr estimator providing higher resolution and robust thresholds</title><author>Khan, Rishi L ; Vadigepalli, Rajanikanth ; Gao, Guang ; Schwaber, James S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20924672173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Genes</topic><topic>Robustness</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Thresholds</topic><topic>Variations</topic><toplevel>online_resources</toplevel><creatorcontrib>Khan, Rishi L</creatorcontrib><creatorcontrib>Vadigepalli, Rajanikanth</creatorcontrib><creatorcontrib>Gao, Guang</creatorcontrib><creatorcontrib>Schwaber, James S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Rishi L</au><au>Vadigepalli, Rajanikanth</au><au>Gao, Guang</au><au>Schwaber, James S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A windowed local fdr estimator providing higher resolution and robust thresholds</atitle><jtitle>arXiv.org</jtitle><date>2007-02-22</date><risdate>2007</risdate><eissn>2331-8422</eissn><abstract>Motivation: In microarray analysis, special consideration must be given to the issues of multiple statistical tests and typically p-values are adjusted to control family-wise error rate (FWER) or false discovery rate (FDR). FDR metrics have been suggested for controlling false positives, however, genes with p-values close to the threshold typically have a higher chance of being false positives than genes with very low p-values. The local FDR (fdr) metric gives the number of false positives in the vicinity of a test statistic. We propose a new fdr estimator that uses windows instead of binsand define heuristics that use the fluctuations in the estimator to determine robust thresholds for classifying differential expression. Results: Our fdr approach estimates the false discovery rate within a window of p-values. We present heuristics that derive robust fdr thresholds such that a significant change in the fdr threshold yields a small change in the number of rejected hypotheses. We compare these thresholds with thresholds from other approaches using two simulated datasets and one cancer microarray dataset. In the latter, our estimator finds two robust thresholds. Since our fdr estimator is an extension of the FDR metric, it can be used with many FDR estimation methods. Availability: An R function implementing the proposed estimator is available at http://www.dbi.tju.edu/dbi/tools/fdr Contact: james.schwaber@jefferson.edu Supplementary Information: Supplementary figures and code are available at http://www.dbi.tju.edu/dbi/tools/fdr</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2007-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2092467217
source Free E- Journals
subjects Genes
Robustness
Statistical analysis
Statistical tests
Thresholds
Variations
title A windowed local fdr estimator providing higher resolution and robust thresholds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20windowed%20local%20fdr%20estimator%20providing%20higher%20resolution%20and%20robust%20thresholds&rft.jtitle=arXiv.org&rft.au=Khan,%20Rishi%20L&rft.date=2007-02-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2092467217%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092467217&rft_id=info:pmid/&rfr_iscdi=true