Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs

Algorithms are presented for the tanh- and sech-methods, which lead to closed-form solutions of nonlinear ordinary and partial differential equations (ODEs and PDEs). New algorithms are given to find exact polynomial solutions of ODEs and PDEs in terms of Jacobi's elliptic functions. For system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2003-11
Hauptverfasser: Baldwin, D, Goktas, U, Hereman, W, Hong, L, Martino, R S, Miller, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Baldwin, D
Goktas, U
Hereman, W
Hong, L
Martino, R S
Miller, J
description Algorithms are presented for the tanh- and sech-methods, which lead to closed-form solutions of nonlinear ordinary and partial differential equations (ODEs and PDEs). New algorithms are given to find exact polynomial solutions of ODEs and PDEs in terms of Jacobi's elliptic functions. For systems with parameters, the algorithms determine the conditions on the parameters so that the differential equations admit polynomial solutions in tanh, sech, combinations thereof, Jacobi's sn or cn functions. Examples illustrate key steps of the algorithms. The new algorithms are implemented in Mathematica. The package DDESpecialSolutions.m can be used to automatically compute new special solutions of nonlinear PDEs. Use of the package, implementation issues, scope, limitations, and future extensions of the software are addressed. A survey is given of related algorithms and symbolic software to compute exact solutions of nonlinear differential equations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2092414500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092414500</sourcerecordid><originalsourceid>FETCH-proquest_journals_20924145003</originalsourceid><addsrcrecordid>eNqNi8sKwjAURIMgKOo_XHBdSNPWx9oHLgXdl7SmGE1zY24C9u-t1A9wNZyZOSM2FVmWJptciAlbED0452K1FkWRTdnz0rUVGl1Dja2LQQaNFrAB9ZZ1AEITvw317Lwi0pVRoC3cO6f8IEp7A2WMdqGHJtp6EBr0YNEabZX0cN4faM7GjTSkFr-cseXxcN2dEufxFRWF8oHR234qBd-KPM0LzrP_Xh8G-kn-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092414500</pqid></control><display><type>article</type><title>Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs</title><source>Free E- Journals</source><creator>Baldwin, D ; Goktas, U ; Hereman, W ; Hong, L ; Martino, R S ; Miller, J</creator><creatorcontrib>Baldwin, D ; Goktas, U ; Hereman, W ; Hong, L ; Martino, R S ; Miller, J</creatorcontrib><description>Algorithms are presented for the tanh- and sech-methods, which lead to closed-form solutions of nonlinear ordinary and partial differential equations (ODEs and PDEs). New algorithms are given to find exact polynomial solutions of ODEs and PDEs in terms of Jacobi's elliptic functions. For systems with parameters, the algorithms determine the conditions on the parameters so that the differential equations admit polynomial solutions in tanh, sech, combinations thereof, Jacobi's sn or cn functions. Examples illustrate key steps of the algorithms. The new algorithms are implemented in Mathematica. The package DDESpecialSolutions.m can be used to automatically compute new special solutions of nonlinear PDEs. Use of the package, implementation issues, scope, limitations, and future extensions of the software are addressed. A survey is given of related algorithms and symbolic software to compute exact solutions of nonlinear differential equations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Elliptic functions ; Exact solutions ; Nonlinear equations ; Parameters ; Partial differential equations ; Polynomials ; Software</subject><ispartof>arXiv.org, 2003-11</ispartof><rights>2003. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Baldwin, D</creatorcontrib><creatorcontrib>Goktas, U</creatorcontrib><creatorcontrib>Hereman, W</creatorcontrib><creatorcontrib>Hong, L</creatorcontrib><creatorcontrib>Martino, R S</creatorcontrib><creatorcontrib>Miller, J</creatorcontrib><title>Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs</title><title>arXiv.org</title><description>Algorithms are presented for the tanh- and sech-methods, which lead to closed-form solutions of nonlinear ordinary and partial differential equations (ODEs and PDEs). New algorithms are given to find exact polynomial solutions of ODEs and PDEs in terms of Jacobi's elliptic functions. For systems with parameters, the algorithms determine the conditions on the parameters so that the differential equations admit polynomial solutions in tanh, sech, combinations thereof, Jacobi's sn or cn functions. Examples illustrate key steps of the algorithms. The new algorithms are implemented in Mathematica. The package DDESpecialSolutions.m can be used to automatically compute new special solutions of nonlinear PDEs. Use of the package, implementation issues, scope, limitations, and future extensions of the software are addressed. A survey is given of related algorithms and symbolic software to compute exact solutions of nonlinear differential equations.</description><subject>Algorithms</subject><subject>Elliptic functions</subject><subject>Exact solutions</subject><subject>Nonlinear equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Polynomials</subject><subject>Software</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi8sKwjAURIMgKOo_XHBdSNPWx9oHLgXdl7SmGE1zY24C9u-t1A9wNZyZOSM2FVmWJptciAlbED0452K1FkWRTdnz0rUVGl1Dja2LQQaNFrAB9ZZ1AEITvw317Lwi0pVRoC3cO6f8IEp7A2WMdqGHJtp6EBr0YNEabZX0cN4faM7GjTSkFr-cseXxcN2dEufxFRWF8oHR234qBd-KPM0LzrP_Xh8G-kn-</recordid><startdate>20031116</startdate><enddate>20031116</enddate><creator>Baldwin, D</creator><creator>Goktas, U</creator><creator>Hereman, W</creator><creator>Hong, L</creator><creator>Martino, R S</creator><creator>Miller, J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20031116</creationdate><title>Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs</title><author>Baldwin, D ; Goktas, U ; Hereman, W ; Hong, L ; Martino, R S ; Miller, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20924145003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Elliptic functions</topic><topic>Exact solutions</topic><topic>Nonlinear equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Polynomials</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>Baldwin, D</creatorcontrib><creatorcontrib>Goktas, U</creatorcontrib><creatorcontrib>Hereman, W</creatorcontrib><creatorcontrib>Hong, L</creatorcontrib><creatorcontrib>Martino, R S</creatorcontrib><creatorcontrib>Miller, J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baldwin, D</au><au>Goktas, U</au><au>Hereman, W</au><au>Hong, L</au><au>Martino, R S</au><au>Miller, J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs</atitle><jtitle>arXiv.org</jtitle><date>2003-11-16</date><risdate>2003</risdate><eissn>2331-8422</eissn><abstract>Algorithms are presented for the tanh- and sech-methods, which lead to closed-form solutions of nonlinear ordinary and partial differential equations (ODEs and PDEs). New algorithms are given to find exact polynomial solutions of ODEs and PDEs in terms of Jacobi's elliptic functions. For systems with parameters, the algorithms determine the conditions on the parameters so that the differential equations admit polynomial solutions in tanh, sech, combinations thereof, Jacobi's sn or cn functions. Examples illustrate key steps of the algorithms. The new algorithms are implemented in Mathematica. The package DDESpecialSolutions.m can be used to automatically compute new special solutions of nonlinear PDEs. Use of the package, implementation issues, scope, limitations, and future extensions of the software are addressed. A survey is given of related algorithms and symbolic software to compute exact solutions of nonlinear differential equations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2003-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2092414500
source Free E- Journals
subjects Algorithms
Elliptic functions
Exact solutions
Nonlinear equations
Parameters
Partial differential equations
Polynomials
Software
title Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Symbolic%20computation%20of%20exact%20solutions%20expressible%20in%20hyperbolic%20and%20elliptic%20functions%20for%20nonlinear%20PDEs&rft.jtitle=arXiv.org&rft.au=Baldwin,%20D&rft.date=2003-11-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2092414500%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092414500&rft_id=info:pmid/&rfr_iscdi=true