Predicting Rates and Distribution of Carbonate Melting in Oceanic Upper Mantle: Implications for Seismic Structure and Global Carbon Cycling

Coupling a global mantle flow model with a parameterized carbonate solidus, we examine the global distribution and extent of carbonate melting beneath the ocean basins. We predict carbonate melting in spatially heterogeneous patterns throughout the oceans. The rate of CO2 segregation from the mantle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2018-07, Vol.45 (14), p.6944-6953
Hauptverfasser: Clerc, Fiona, Behn, Mark D., Parmentier, E. M., Hirth, Greg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6953
container_issue 14
container_start_page 6944
container_title Geophysical research letters
container_volume 45
creator Clerc, Fiona
Behn, Mark D.
Parmentier, E. M.
Hirth, Greg
description Coupling a global mantle flow model with a parameterized carbonate solidus, we examine the global distribution and extent of carbonate melting beneath the ocean basins. We predict carbonate melting in spatially heterogeneous patterns throughout the oceans. The rate of CO2 segregation from the mantle by off‐axis carbonate melting (~1.1 × 1012 mol/year) is comparable to the global ridge flux (~1.2 × 1012 mol/year). As the generation of carbonate melts should be enhanced in regions of mantle upwelling, we compare upwelling patterns with seismic detections of the G‐discontinuity. The upwelling velocities in areas where the G‐discontinuity is detected are not statistically different from areas with no detections—implying that the generation and pooling of carbonate melts are not dominant mechanisms in forming the G‐discontinuity. However, detections of a deeper seismic discontinuity are correlated with enhanced upwelling velocities, suggesting locally higher melt fractions at the transition between carbonate‐only and carbonate‐enhanced silicate melting. Plain Language Summary Despite support from indirect observations, the existence of a layer of carbon‐rich, partially molten rock (~60 km) below oceanic crust, made possible by the presence of CO2, remains uncertain. In particular, abrupt decreases in the velocity that seismic waves propagate at depths of 40–90 and 80–180 km beneath the ocean basins remain unexplained. In this study, we test whether these seismic discontinuities can be attributed to the presence of a layer of carbon‐rich melt. Melt generation occurs only where the mantle is upwelling; thus, we predict the locations of carbonate‐enhanced melting using a mantle convection model and compare the resulting melt distribution with the seismic observations. We find that the shallower seismic discontinuities (at 40‐ to 90‐km depth) are not associated with regions of predicted melting but that the deeper discontinuities (80–180 km) occur preferentially in areas of greater mantle upwelling—suggesting that these deep observations may reflect the presence of localized melt accumulation at depth. Finally, we show that carbonate melting far from mid‐ocean ridges produces an additional CO2 flux previously overlooked in deep carbon cycle estimates, roughly equivalent to the flux of CO2 due to seafloor volcanism. Key Points Using calculated mantle upwelling patterns, we predict the presence of low‐degree carbonate melts throughout the oceanic basins Globally, the
doi_str_mv 10.1029/2018GL078142
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2092345609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092345609</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3674-e62b068f167775df54d7fe0f4f468a3443c468f20438d1883118353c7c755c613</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4wEscaWw_knscEMFQqVWRS09R65jI1dpEuxEqO_AQ-O2HDhx2pH225nVIHRN4I4Aze4pEJlPQUjC6QkakIzzkQQQp2gAkEVNRXqOLkLYAAADRgbo-82b0unO1R94oToTsKpL_ORC592671xT48bisfLrpo5rPDPVgXU1nmujaqfxqm2NxzNVd5V5wJNtWzmt9pcB28bjpXFhG7Fl53vd9d4cEvKqWavq1xiPd7qKrpfozKoqmKvfOUSrl-f38etoOs8n48fpSLFU8JFJ6RpSaUkqhEhKm_BSWAOWW55KxThnOgpLgTNZEikZIZIlTAstkkSnhA3RzdG39c1nb0JXbJre1zGyoJBRxpMUskjdHintmxC8sUXr3Vb5XUGg2Pdd_O074vSIf7nK7P5li3wxTYSIj_4AlqSA3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092345609</pqid></control><display><type>article</type><title>Predicting Rates and Distribution of Carbonate Melting in Oceanic Upper Mantle: Implications for Seismic Structure and Global Carbon Cycling</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Clerc, Fiona ; Behn, Mark D. ; Parmentier, E. M. ; Hirth, Greg</creator><creatorcontrib>Clerc, Fiona ; Behn, Mark D. ; Parmentier, E. M. ; Hirth, Greg</creatorcontrib><description>Coupling a global mantle flow model with a parameterized carbonate solidus, we examine the global distribution and extent of carbonate melting beneath the ocean basins. We predict carbonate melting in spatially heterogeneous patterns throughout the oceans. The rate of CO2 segregation from the mantle by off‐axis carbonate melting (~1.1 × 1012 mol/year) is comparable to the global ridge flux (~1.2 × 1012 mol/year). As the generation of carbonate melts should be enhanced in regions of mantle upwelling, we compare upwelling patterns with seismic detections of the G‐discontinuity. The upwelling velocities in areas where the G‐discontinuity is detected are not statistically different from areas with no detections—implying that the generation and pooling of carbonate melts are not dominant mechanisms in forming the G‐discontinuity. However, detections of a deeper seismic discontinuity are correlated with enhanced upwelling velocities, suggesting locally higher melt fractions at the transition between carbonate‐only and carbonate‐enhanced silicate melting. Plain Language Summary Despite support from indirect observations, the existence of a layer of carbon‐rich, partially molten rock (~60 km) below oceanic crust, made possible by the presence of CO2, remains uncertain. In particular, abrupt decreases in the velocity that seismic waves propagate at depths of 40–90 and 80–180 km beneath the ocean basins remain unexplained. In this study, we test whether these seismic discontinuities can be attributed to the presence of a layer of carbon‐rich melt. Melt generation occurs only where the mantle is upwelling; thus, we predict the locations of carbonate‐enhanced melting using a mantle convection model and compare the resulting melt distribution with the seismic observations. We find that the shallower seismic discontinuities (at 40‐ to 90‐km depth) are not associated with regions of predicted melting but that the deeper discontinuities (80–180 km) occur preferentially in areas of greater mantle upwelling—suggesting that these deep observations may reflect the presence of localized melt accumulation at depth. Finally, we show that carbonate melting far from mid‐ocean ridges produces an additional CO2 flux previously overlooked in deep carbon cycle estimates, roughly equivalent to the flux of CO2 due to seafloor volcanism. Key Points Using calculated mantle upwelling patterns, we predict the presence of low‐degree carbonate melts throughout the oceanic basins Globally, the rate of CO2 segregation from the mantle by off‐axis carbonate melting is comparable to the mid‐ocean ridge CO2 flux Detections of the G‐discontinuity do not correlate with mantle upwelling; deep (~150 km) discontinuities are associated with upwelling</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2018GL078142</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Basins ; Carbon ; Carbon cycle ; Carbon dioxide ; Carbon dioxide flux ; carbonate melt ; Carbonates ; Convection ; deep carbon cycle ; Discontinuity ; Distribution ; Earth mantle ; Fluctuations ; Flux ; Gutenberg discontinuity ; lithosphere‐asthenosphere boundary ; Magma ; Mantle convection ; Mathematical models ; Melting ; Melts ; Ocean basins ; Ocean circulation ; Ocean floor ; Oceanic crust ; oceanic upper mantle ; Oceans ; P-waves ; Regions ; Ridges ; Segregation ; Seismic activity ; Seismic discontinuities ; Seismic wave velocities ; Seismic waves ; Silicates ; Solidus ; Upper mantle ; Upwelling ; Volcanic activity ; Volcanism</subject><ispartof>Geophysical research letters, 2018-07, Vol.45 (14), p.6944-6953</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3674-e62b068f167775df54d7fe0f4f468a3443c468f20438d1883118353c7c755c613</citedby><cites>FETCH-LOGICAL-a3674-e62b068f167775df54d7fe0f4f468a3443c468f20438d1883118353c7c755c613</cites><orcidid>0000-0002-9857-6328 ; 0000-0002-2001-1335 ; 0000-0001-9094-7705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018GL078142$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018GL078142$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Clerc, Fiona</creatorcontrib><creatorcontrib>Behn, Mark D.</creatorcontrib><creatorcontrib>Parmentier, E. M.</creatorcontrib><creatorcontrib>Hirth, Greg</creatorcontrib><title>Predicting Rates and Distribution of Carbonate Melting in Oceanic Upper Mantle: Implications for Seismic Structure and Global Carbon Cycling</title><title>Geophysical research letters</title><description>Coupling a global mantle flow model with a parameterized carbonate solidus, we examine the global distribution and extent of carbonate melting beneath the ocean basins. We predict carbonate melting in spatially heterogeneous patterns throughout the oceans. The rate of CO2 segregation from the mantle by off‐axis carbonate melting (~1.1 × 1012 mol/year) is comparable to the global ridge flux (~1.2 × 1012 mol/year). As the generation of carbonate melts should be enhanced in regions of mantle upwelling, we compare upwelling patterns with seismic detections of the G‐discontinuity. The upwelling velocities in areas where the G‐discontinuity is detected are not statistically different from areas with no detections—implying that the generation and pooling of carbonate melts are not dominant mechanisms in forming the G‐discontinuity. However, detections of a deeper seismic discontinuity are correlated with enhanced upwelling velocities, suggesting locally higher melt fractions at the transition between carbonate‐only and carbonate‐enhanced silicate melting. Plain Language Summary Despite support from indirect observations, the existence of a layer of carbon‐rich, partially molten rock (~60 km) below oceanic crust, made possible by the presence of CO2, remains uncertain. In particular, abrupt decreases in the velocity that seismic waves propagate at depths of 40–90 and 80–180 km beneath the ocean basins remain unexplained. In this study, we test whether these seismic discontinuities can be attributed to the presence of a layer of carbon‐rich melt. Melt generation occurs only where the mantle is upwelling; thus, we predict the locations of carbonate‐enhanced melting using a mantle convection model and compare the resulting melt distribution with the seismic observations. We find that the shallower seismic discontinuities (at 40‐ to 90‐km depth) are not associated with regions of predicted melting but that the deeper discontinuities (80–180 km) occur preferentially in areas of greater mantle upwelling—suggesting that these deep observations may reflect the presence of localized melt accumulation at depth. Finally, we show that carbonate melting far from mid‐ocean ridges produces an additional CO2 flux previously overlooked in deep carbon cycle estimates, roughly equivalent to the flux of CO2 due to seafloor volcanism. Key Points Using calculated mantle upwelling patterns, we predict the presence of low‐degree carbonate melts throughout the oceanic basins Globally, the rate of CO2 segregation from the mantle by off‐axis carbonate melting is comparable to the mid‐ocean ridge CO2 flux Detections of the G‐discontinuity do not correlate with mantle upwelling; deep (~150 km) discontinuities are associated with upwelling</description><subject>Basins</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide flux</subject><subject>carbonate melt</subject><subject>Carbonates</subject><subject>Convection</subject><subject>deep carbon cycle</subject><subject>Discontinuity</subject><subject>Distribution</subject><subject>Earth mantle</subject><subject>Fluctuations</subject><subject>Flux</subject><subject>Gutenberg discontinuity</subject><subject>lithosphere‐asthenosphere boundary</subject><subject>Magma</subject><subject>Mantle convection</subject><subject>Mathematical models</subject><subject>Melting</subject><subject>Melts</subject><subject>Ocean basins</subject><subject>Ocean circulation</subject><subject>Ocean floor</subject><subject>Oceanic crust</subject><subject>oceanic upper mantle</subject><subject>Oceans</subject><subject>P-waves</subject><subject>Regions</subject><subject>Ridges</subject><subject>Segregation</subject><subject>Seismic activity</subject><subject>Seismic discontinuities</subject><subject>Seismic wave velocities</subject><subject>Seismic waves</subject><subject>Silicates</subject><subject>Solidus</subject><subject>Upper mantle</subject><subject>Upwelling</subject><subject>Volcanic activity</subject><subject>Volcanism</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqVw4wEscaWw_knscEMFQqVWRS09R65jI1dpEuxEqO_AQ-O2HDhx2pH225nVIHRN4I4Aze4pEJlPQUjC6QkakIzzkQQQp2gAkEVNRXqOLkLYAAADRgbo-82b0unO1R94oToTsKpL_ORC592671xT48bisfLrpo5rPDPVgXU1nmujaqfxqm2NxzNVd5V5wJNtWzmt9pcB28bjpXFhG7Fl53vd9d4cEvKqWavq1xiPd7qKrpfozKoqmKvfOUSrl-f38etoOs8n48fpSLFU8JFJ6RpSaUkqhEhKm_BSWAOWW55KxThnOgpLgTNZEikZIZIlTAstkkSnhA3RzdG39c1nb0JXbJre1zGyoJBRxpMUskjdHintmxC8sUXr3Vb5XUGg2Pdd_O074vSIf7nK7P5li3wxTYSIj_4AlqSA3w</recordid><startdate>20180728</startdate><enddate>20180728</enddate><creator>Clerc, Fiona</creator><creator>Behn, Mark D.</creator><creator>Parmentier, E. M.</creator><creator>Hirth, Greg</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9857-6328</orcidid><orcidid>https://orcid.org/0000-0002-2001-1335</orcidid><orcidid>https://orcid.org/0000-0001-9094-7705</orcidid></search><sort><creationdate>20180728</creationdate><title>Predicting Rates and Distribution of Carbonate Melting in Oceanic Upper Mantle: Implications for Seismic Structure and Global Carbon Cycling</title><author>Clerc, Fiona ; Behn, Mark D. ; Parmentier, E. M. ; Hirth, Greg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3674-e62b068f167775df54d7fe0f4f468a3443c468f20438d1883118353c7c755c613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Basins</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide flux</topic><topic>carbonate melt</topic><topic>Carbonates</topic><topic>Convection</topic><topic>deep carbon cycle</topic><topic>Discontinuity</topic><topic>Distribution</topic><topic>Earth mantle</topic><topic>Fluctuations</topic><topic>Flux</topic><topic>Gutenberg discontinuity</topic><topic>lithosphere‐asthenosphere boundary</topic><topic>Magma</topic><topic>Mantle convection</topic><topic>Mathematical models</topic><topic>Melting</topic><topic>Melts</topic><topic>Ocean basins</topic><topic>Ocean circulation</topic><topic>Ocean floor</topic><topic>Oceanic crust</topic><topic>oceanic upper mantle</topic><topic>Oceans</topic><topic>P-waves</topic><topic>Regions</topic><topic>Ridges</topic><topic>Segregation</topic><topic>Seismic activity</topic><topic>Seismic discontinuities</topic><topic>Seismic wave velocities</topic><topic>Seismic waves</topic><topic>Silicates</topic><topic>Solidus</topic><topic>Upper mantle</topic><topic>Upwelling</topic><topic>Volcanic activity</topic><topic>Volcanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clerc, Fiona</creatorcontrib><creatorcontrib>Behn, Mark D.</creatorcontrib><creatorcontrib>Parmentier, E. M.</creatorcontrib><creatorcontrib>Hirth, Greg</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clerc, Fiona</au><au>Behn, Mark D.</au><au>Parmentier, E. M.</au><au>Hirth, Greg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Rates and Distribution of Carbonate Melting in Oceanic Upper Mantle: Implications for Seismic Structure and Global Carbon Cycling</atitle><jtitle>Geophysical research letters</jtitle><date>2018-07-28</date><risdate>2018</risdate><volume>45</volume><issue>14</issue><spage>6944</spage><epage>6953</epage><pages>6944-6953</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Coupling a global mantle flow model with a parameterized carbonate solidus, we examine the global distribution and extent of carbonate melting beneath the ocean basins. We predict carbonate melting in spatially heterogeneous patterns throughout the oceans. The rate of CO2 segregation from the mantle by off‐axis carbonate melting (~1.1 × 1012 mol/year) is comparable to the global ridge flux (~1.2 × 1012 mol/year). As the generation of carbonate melts should be enhanced in regions of mantle upwelling, we compare upwelling patterns with seismic detections of the G‐discontinuity. The upwelling velocities in areas where the G‐discontinuity is detected are not statistically different from areas with no detections—implying that the generation and pooling of carbonate melts are not dominant mechanisms in forming the G‐discontinuity. However, detections of a deeper seismic discontinuity are correlated with enhanced upwelling velocities, suggesting locally higher melt fractions at the transition between carbonate‐only and carbonate‐enhanced silicate melting. Plain Language Summary Despite support from indirect observations, the existence of a layer of carbon‐rich, partially molten rock (~60 km) below oceanic crust, made possible by the presence of CO2, remains uncertain. In particular, abrupt decreases in the velocity that seismic waves propagate at depths of 40–90 and 80–180 km beneath the ocean basins remain unexplained. In this study, we test whether these seismic discontinuities can be attributed to the presence of a layer of carbon‐rich melt. Melt generation occurs only where the mantle is upwelling; thus, we predict the locations of carbonate‐enhanced melting using a mantle convection model and compare the resulting melt distribution with the seismic observations. We find that the shallower seismic discontinuities (at 40‐ to 90‐km depth) are not associated with regions of predicted melting but that the deeper discontinuities (80–180 km) occur preferentially in areas of greater mantle upwelling—suggesting that these deep observations may reflect the presence of localized melt accumulation at depth. Finally, we show that carbonate melting far from mid‐ocean ridges produces an additional CO2 flux previously overlooked in deep carbon cycle estimates, roughly equivalent to the flux of CO2 due to seafloor volcanism. Key Points Using calculated mantle upwelling patterns, we predict the presence of low‐degree carbonate melts throughout the oceanic basins Globally, the rate of CO2 segregation from the mantle by off‐axis carbonate melting is comparable to the mid‐ocean ridge CO2 flux Detections of the G‐discontinuity do not correlate with mantle upwelling; deep (~150 km) discontinuities are associated with upwelling</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2018GL078142</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9857-6328</orcidid><orcidid>https://orcid.org/0000-0002-2001-1335</orcidid><orcidid>https://orcid.org/0000-0001-9094-7705</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2018-07, Vol.45 (14), p.6944-6953
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_2092345609
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Basins
Carbon
Carbon cycle
Carbon dioxide
Carbon dioxide flux
carbonate melt
Carbonates
Convection
deep carbon cycle
Discontinuity
Distribution
Earth mantle
Fluctuations
Flux
Gutenberg discontinuity
lithosphere‐asthenosphere boundary
Magma
Mantle convection
Mathematical models
Melting
Melts
Ocean basins
Ocean circulation
Ocean floor
Oceanic crust
oceanic upper mantle
Oceans
P-waves
Regions
Ridges
Segregation
Seismic activity
Seismic discontinuities
Seismic wave velocities
Seismic waves
Silicates
Solidus
Upper mantle
Upwelling
Volcanic activity
Volcanism
title Predicting Rates and Distribution of Carbonate Melting in Oceanic Upper Mantle: Implications for Seismic Structure and Global Carbon Cycling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Rates%20and%20Distribution%20of%20Carbonate%20Melting%20in%20Oceanic%20Upper%20Mantle:%20Implications%20for%20Seismic%20Structure%20and%20Global%20Carbon%20Cycling&rft.jtitle=Geophysical%20research%20letters&rft.au=Clerc,%20Fiona&rft.date=2018-07-28&rft.volume=45&rft.issue=14&rft.spage=6944&rft.epage=6953&rft.pages=6944-6953&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2018GL078142&rft_dat=%3Cproquest_cross%3E2092345609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092345609&rft_id=info:pmid/&rfr_iscdi=true