Hausdorff moment problem via fractional moments

We outline an efficient method for the reconstruction of a probability density function from the knowledge of its infinite sequence of ordinary moments. The approximate density is obtained resorting to maximum entropy technique, under the constraint of some fractional moments. The latter ones are ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2002-07
Hauptverfasser: Pierluigi Novi Inverardi, Petri, Alberto, Pontuale, Giorgio, Tagliani, Aldo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pierluigi Novi Inverardi
Petri, Alberto
Pontuale, Giorgio
Tagliani, Aldo
description We outline an efficient method for the reconstruction of a probability density function from the knowledge of its infinite sequence of ordinary moments. The approximate density is obtained resorting to maximum entropy technique, under the constraint of some fractional moments. The latter ones are obtained explicitly in terms of the infinite sequence of given ordinary moments. It is proved that the approximate density converges in entropy to the underlying density, so that it demonstrates to be useful for calculating expected values.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2091890745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091890745</sourcerecordid><originalsourceid>FETCH-proquest_journals_20918907453</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ90gsLU7JL0pLU8jNz03NK1EoKMpPyknNVSjLTFRIK0pMLsnMz0vMgcoW8zCwpiXmFKfyQmluBmU31xBnD12gtsLS1OKS-Kz80iKghuJ4IwNLQwtLA3MTU2PiVAEAZOwzNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091890745</pqid></control><display><type>article</type><title>Hausdorff moment problem via fractional moments</title><source>Free E- Journals</source><creator>Pierluigi Novi Inverardi ; Petri, Alberto ; Pontuale, Giorgio ; Tagliani, Aldo</creator><creatorcontrib>Pierluigi Novi Inverardi ; Petri, Alberto ; Pontuale, Giorgio ; Tagliani, Aldo</creatorcontrib><description>We outline an efficient method for the reconstruction of a probability density function from the knowledge of its infinite sequence of ordinary moments. The approximate density is obtained resorting to maximum entropy technique, under the constraint of some fractional moments. The latter ones are obtained explicitly in terms of the infinite sequence of given ordinary moments. It is proved that the approximate density converges in entropy to the underlying density, so that it demonstrates to be useful for calculating expected values.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Maximum entropy ; Probability density functions</subject><ispartof>arXiv.org, 2002-07</ispartof><rights>2002. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Pierluigi Novi Inverardi</creatorcontrib><creatorcontrib>Petri, Alberto</creatorcontrib><creatorcontrib>Pontuale, Giorgio</creatorcontrib><creatorcontrib>Tagliani, Aldo</creatorcontrib><title>Hausdorff moment problem via fractional moments</title><title>arXiv.org</title><description>We outline an efficient method for the reconstruction of a probability density function from the knowledge of its infinite sequence of ordinary moments. The approximate density is obtained resorting to maximum entropy technique, under the constraint of some fractional moments. The latter ones are obtained explicitly in terms of the infinite sequence of given ordinary moments. It is proved that the approximate density converges in entropy to the underlying density, so that it demonstrates to be useful for calculating expected values.</description><subject>Maximum entropy</subject><subject>Probability density functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ90gsLU7JL0pLU8jNz03NK1EoKMpPyknNVSjLTFRIK0pMLsnMz0vMgcoW8zCwpiXmFKfyQmluBmU31xBnD12gtsLS1OKS-Kz80iKghuJ4IwNLQwtLA3MTU2PiVAEAZOwzNw</recordid><startdate>20020710</startdate><enddate>20020710</enddate><creator>Pierluigi Novi Inverardi</creator><creator>Petri, Alberto</creator><creator>Pontuale, Giorgio</creator><creator>Tagliani, Aldo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20020710</creationdate><title>Hausdorff moment problem via fractional moments</title><author>Pierluigi Novi Inverardi ; Petri, Alberto ; Pontuale, Giorgio ; Tagliani, Aldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20918907453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Maximum entropy</topic><topic>Probability density functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Pierluigi Novi Inverardi</creatorcontrib><creatorcontrib>Petri, Alberto</creatorcontrib><creatorcontrib>Pontuale, Giorgio</creatorcontrib><creatorcontrib>Tagliani, Aldo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pierluigi Novi Inverardi</au><au>Petri, Alberto</au><au>Pontuale, Giorgio</au><au>Tagliani, Aldo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Hausdorff moment problem via fractional moments</atitle><jtitle>arXiv.org</jtitle><date>2002-07-10</date><risdate>2002</risdate><eissn>2331-8422</eissn><abstract>We outline an efficient method for the reconstruction of a probability density function from the knowledge of its infinite sequence of ordinary moments. The approximate density is obtained resorting to maximum entropy technique, under the constraint of some fractional moments. The latter ones are obtained explicitly in terms of the infinite sequence of given ordinary moments. It is proved that the approximate density converges in entropy to the underlying density, so that it demonstrates to be useful for calculating expected values.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2002-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2091890745
source Free E- Journals
subjects Maximum entropy
Probability density functions
title Hausdorff moment problem via fractional moments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Hausdorff%20moment%20problem%20via%20fractional%20moments&rft.jtitle=arXiv.org&rft.au=Pierluigi%20Novi%20Inverardi&rft.date=2002-07-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2091890745%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2091890745&rft_id=info:pmid/&rfr_iscdi=true