Elliptic, Parabolic and Hyperbolic Analytic Function Theory--0: Geometry of Domains
This paper lays down a foundation for a systematic treatment of three main (elliptic, parabolic and hyperbolic) types of analytic function theory based on the representation theory of SL(2,R) group. We describe here geometries of corresponding domains. The principal role is played by Clifford algebr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2005-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kisil, Vladimir V Biswas, Debapriya |
description | This paper lays down a foundation for a systematic treatment of three main (elliptic, parabolic and hyperbolic) types of analytic function theory based on the representation theory of SL(2,R) group. We describe here geometries of corresponding domains. The principal role is played by Clifford algebras of matching types. Keywords: analytic function theory, semisimple groups, elliptic, parabolic, hyperbolic, Clifford algebras |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2091629025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091629025</sourcerecordid><originalsourceid>FETCH-proquest_journals_20916290253</originalsourceid><addsrcrecordid>eNqNjEELgjAYQEcQJOV_GHRtMLe07BaldQzyLssmTeY-2-Zh_z6hfkCnx4PHm6GIcZ6Q_ZaxBYqd6yilLNuxNOURuhdaq8GrZoNvwooHaNVgYZ74GgZpv3o0QocpweVoGq_A4OolwQZC6AFfJPTS24ChxWfohTJuheat0E7GPy7Ruiyq05UMFt6jdL7uYLTT1NWM5knGcspS_l_1Ab4_Pxk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091629025</pqid></control><display><type>article</type><title>Elliptic, Parabolic and Hyperbolic Analytic Function Theory--0: Geometry of Domains</title><source>Free E- Journals</source><creator>Kisil, Vladimir V ; Biswas, Debapriya</creator><creatorcontrib>Kisil, Vladimir V ; Biswas, Debapriya</creatorcontrib><description>This paper lays down a foundation for a systematic treatment of three main (elliptic, parabolic and hyperbolic) types of analytic function theory based on the representation theory of SL(2,R) group. We describe here geometries of corresponding domains. The principal role is played by Clifford algebras of matching types. Keywords: analytic function theory, semisimple groups, elliptic, parabolic, hyperbolic, Clifford algebras</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Analytic functions ; Domains ; Hyperbolic functions ; Mathematical analysis</subject><ispartof>arXiv.org, 2005-09</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/math/0410399.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kisil, Vladimir V</creatorcontrib><creatorcontrib>Biswas, Debapriya</creatorcontrib><title>Elliptic, Parabolic and Hyperbolic Analytic Function Theory--0: Geometry of Domains</title><title>arXiv.org</title><description>This paper lays down a foundation for a systematic treatment of three main (elliptic, parabolic and hyperbolic) types of analytic function theory based on the representation theory of SL(2,R) group. We describe here geometries of corresponding domains. The principal role is played by Clifford algebras of matching types. Keywords: analytic function theory, semisimple groups, elliptic, parabolic, hyperbolic, Clifford algebras</description><subject>Analytic functions</subject><subject>Domains</subject><subject>Hyperbolic functions</subject><subject>Mathematical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjEELgjAYQEcQJOV_GHRtMLe07BaldQzyLssmTeY-2-Zh_z6hfkCnx4PHm6GIcZ6Q_ZaxBYqd6yilLNuxNOURuhdaq8GrZoNvwooHaNVgYZ74GgZpv3o0QocpweVoGq_A4OolwQZC6AFfJPTS24ChxWfohTJuheat0E7GPy7Ruiyq05UMFt6jdL7uYLTT1NWM5knGcspS_l_1Ab4_Pxk</recordid><startdate>20050908</startdate><enddate>20050908</enddate><creator>Kisil, Vladimir V</creator><creator>Biswas, Debapriya</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20050908</creationdate><title>Elliptic, Parabolic and Hyperbolic Analytic Function Theory--0: Geometry of Domains</title><author>Kisil, Vladimir V ; Biswas, Debapriya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20916290253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Analytic functions</topic><topic>Domains</topic><topic>Hyperbolic functions</topic><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Kisil, Vladimir V</creatorcontrib><creatorcontrib>Biswas, Debapriya</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kisil, Vladimir V</au><au>Biswas, Debapriya</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Elliptic, Parabolic and Hyperbolic Analytic Function Theory--0: Geometry of Domains</atitle><jtitle>arXiv.org</jtitle><date>2005-09-08</date><risdate>2005</risdate><eissn>2331-8422</eissn><abstract>This paper lays down a foundation for a systematic treatment of three main (elliptic, parabolic and hyperbolic) types of analytic function theory based on the representation theory of SL(2,R) group. We describe here geometries of corresponding domains. The principal role is played by Clifford algebras of matching types. Keywords: analytic function theory, semisimple groups, elliptic, parabolic, hyperbolic, Clifford algebras</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2005-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2091629025 |
source | Free E- Journals |
subjects | Analytic functions Domains Hyperbolic functions Mathematical analysis |
title | Elliptic, Parabolic and Hyperbolic Analytic Function Theory--0: Geometry of Domains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A06%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Elliptic,%20Parabolic%20and%20Hyperbolic%20Analytic%20Function%20Theory--0:%20Geometry%20of%20Domains&rft.jtitle=arXiv.org&rft.au=Kisil,%20Vladimir%20V&rft.date=2005-09-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2091629025%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2091629025&rft_id=info:pmid/&rfr_iscdi=true |