On the testability of the CAR assumption

In recent years a popular nonparametric model for coarsened data is an assumption on the coarsening mechanism called coarsening at random (CAR). It has been conjectured in several papers that this assumption cannot be tested by the data, that is, the assumption does not restrict the possible distrib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2005-03
1. Verfasser: Cator, Eric A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cator, Eric A
description In recent years a popular nonparametric model for coarsened data is an assumption on the coarsening mechanism called coarsening at random (CAR). It has been conjectured in several papers that this assumption cannot be tested by the data, that is, the assumption does not restrict the possible distributions of the data. In this paper we will show that this conjecture is not always true; an example will be current status data. We will also give conditions when the conjecture is true, and in doing so, we will introduce a generalized version of the CAR assumption. As an illustration, we retrieve the well-known result that the CAR assumption cannot be tested in the case of right-censored data.
doi_str_mv 10.48550/arxiv.0503737
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2091621226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091621226</sourcerecordid><originalsourceid>FETCH-proquest_journals_20916212263</originalsourceid><addsrcrecordid>eNpjYBAzNNAzsTA1NdBPLKrILNMzMDUwNjc2Z2LgNDI2NtS1MDEy4mDgLS7OMjAwMDIzNzI1NeZk0PDPUyjJSFUoSS0uSUzKzMksqVTITwMLOTsGKSQWF5fmFpRk5ufxMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MJSoO74rPzSojygVLyRgaWhmZGhkZGZMXGqAECPNTE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091621226</pqid></control><display><type>article</type><title>On the testability of the CAR assumption</title><source>Free E- Journals</source><creator>Cator, Eric A</creator><creatorcontrib>Cator, Eric A</creatorcontrib><description>In recent years a popular nonparametric model for coarsened data is an assumption on the coarsening mechanism called coarsening at random (CAR). It has been conjectured in several papers that this assumption cannot be tested by the data, that is, the assumption does not restrict the possible distributions of the data. In this paper we will show that this conjecture is not always true; an example will be current status data. We will also give conditions when the conjecture is true, and in doing so, we will introduce a generalized version of the CAR assumption. As an illustration, we retrieve the well-known result that the CAR assumption cannot be tested in the case of right-censored data.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0503737</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coarsening ; Testability</subject><ispartof>arXiv.org, 2005-03</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/math/0503737.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27925</link.rule.ids></links><search><creatorcontrib>Cator, Eric A</creatorcontrib><title>On the testability of the CAR assumption</title><title>arXiv.org</title><description>In recent years a popular nonparametric model for coarsened data is an assumption on the coarsening mechanism called coarsening at random (CAR). It has been conjectured in several papers that this assumption cannot be tested by the data, that is, the assumption does not restrict the possible distributions of the data. In this paper we will show that this conjecture is not always true; an example will be current status data. We will also give conditions when the conjecture is true, and in doing so, we will introduce a generalized version of the CAR assumption. As an illustration, we retrieve the well-known result that the CAR assumption cannot be tested in the case of right-censored data.</description><subject>Coarsening</subject><subject>Testability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYBAzNNAzsTA1NdBPLKrILNMzMDUwNjc2Z2LgNDI2NtS1MDEy4mDgLS7OMjAwMDIzNzI1NeZk0PDPUyjJSFUoSS0uSUzKzMksqVTITwMLOTsGKSQWF5fmFpRk5ufxMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MJSoO74rPzSojygVLyRgaWhmZGhkZGZMXGqAECPNTE</recordid><startdate>20050331</startdate><enddate>20050331</enddate><creator>Cator, Eric A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20050331</creationdate><title>On the testability of the CAR assumption</title><author>Cator, Eric A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20916212263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Coarsening</topic><topic>Testability</topic><toplevel>online_resources</toplevel><creatorcontrib>Cator, Eric A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cator, Eric A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the testability of the CAR assumption</atitle><jtitle>arXiv.org</jtitle><date>2005-03-31</date><risdate>2005</risdate><eissn>2331-8422</eissn><abstract>In recent years a popular nonparametric model for coarsened data is an assumption on the coarsening mechanism called coarsening at random (CAR). It has been conjectured in several papers that this assumption cannot be tested by the data, that is, the assumption does not restrict the possible distributions of the data. In this paper we will show that this conjecture is not always true; an example will be current status data. We will also give conditions when the conjecture is true, and in doing so, we will introduce a generalized version of the CAR assumption. As an illustration, we retrieve the well-known result that the CAR assumption cannot be tested in the case of right-censored data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0503737</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2005-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2091621226
source Free E- Journals
subjects Coarsening
Testability
title On the testability of the CAR assumption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20testability%20of%20the%20CAR%20assumption&rft.jtitle=arXiv.org&rft.au=Cator,%20Eric%20A&rft.date=2005-03-31&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0503737&rft_dat=%3Cproquest%3E2091621226%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2091621226&rft_id=info:pmid/&rfr_iscdi=true