Lagrangian Intersections and the Serre Spectral Sequence
For a transversal pair of closed Lagrangian submanifolds L, L' of a symplectic manifold M so that \(\pi_{1}(L)=\pi_{1}(L')=0=c_{1}|_{\pi_{2}(M)}=\omega|_{\pi_{2}(M)}\) and a generic almost complex structure J we construct an invariant with a high homotopical content which consists in the p...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2007-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Barraud, J F Cornea, O |
description | For a transversal pair of closed Lagrangian submanifolds L, L' of a symplectic manifold M so that \(\pi_{1}(L)=\pi_{1}(L')=0=c_{1}|_{\pi_{2}(M)}=\omega|_{\pi_{2}(M)}\) and a generic almost complex structure J we construct an invariant with a high homotopical content which consists in the pages of order \(\geq 2\) of a spectral sequence whose differentials provide an algebraic measure of the high-dimensional moduli spaces of pseudo-holomorpic strips of finite energy that join L and L'. When L and L' are hamiltonian isotopic, these pages coincide (up to a horizontal translation) with the terms of the Serre-spectral sequence of the path-loop fibration \(\Omega L\to PL\to L\). Among other applications we prove that, in this case, each point \(x\in L\backslash L'\) belongs to some pseudo-holomorpic strip of symplectic area less than the Hofer distance between L and L'. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2091447625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091447625</sourcerecordid><originalsourceid>FETCH-proquest_journals_20914476253</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8ElML0rMS89MzFPwzCtJLSpOTS7JzM8rVkjMS1EoyUhVCE4tKgKSBUDxosQcILewNDUvOZWHgTUtMac4lRdKczMou7mGOHvoFhTlA1UUl8Rn5ZcW5QGl4o0MLA1NTMzNjEyNiVMFAEuQNhc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091447625</pqid></control><display><type>article</type><title>Lagrangian Intersections and the Serre Spectral Sequence</title><source>Free E- Journals</source><creator>Barraud, J F ; Cornea, O</creator><creatorcontrib>Barraud, J F ; Cornea, O</creatorcontrib><description>For a transversal pair of closed Lagrangian submanifolds L, L' of a symplectic manifold M so that \(\pi_{1}(L)=\pi_{1}(L')=0=c_{1}|_{\pi_{2}(M)}=\omega|_{\pi_{2}(M)}\) and a generic almost complex structure J we construct an invariant with a high homotopical content which consists in the pages of order \(\geq 2\) of a spectral sequence whose differentials provide an algebraic measure of the high-dimensional moduli spaces of pseudo-holomorpic strips of finite energy that join L and L'. When L and L' are hamiltonian isotopic, these pages coincide (up to a horizontal translation) with the terms of the Serre-spectral sequence of the path-loop fibration \(\Omega L\to PL\to L\). Among other applications we prove that, in this case, each point \(x\in L\backslash L'\) belongs to some pseudo-holomorpic strip of symplectic area less than the Hofer distance between L and L'.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Intersections ; Manifolds (mathematics) ; Spectra</subject><ispartof>arXiv.org, 2007-07</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/math/0401094.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Barraud, J F</creatorcontrib><creatorcontrib>Cornea, O</creatorcontrib><title>Lagrangian Intersections and the Serre Spectral Sequence</title><title>arXiv.org</title><description>For a transversal pair of closed Lagrangian submanifolds L, L' of a symplectic manifold M so that \(\pi_{1}(L)=\pi_{1}(L')=0=c_{1}|_{\pi_{2}(M)}=\omega|_{\pi_{2}(M)}\) and a generic almost complex structure J we construct an invariant with a high homotopical content which consists in the pages of order \(\geq 2\) of a spectral sequence whose differentials provide an algebraic measure of the high-dimensional moduli spaces of pseudo-holomorpic strips of finite energy that join L and L'. When L and L' are hamiltonian isotopic, these pages coincide (up to a horizontal translation) with the terms of the Serre-spectral sequence of the path-loop fibration \(\Omega L\to PL\to L\). Among other applications we prove that, in this case, each point \(x\in L\backslash L'\) belongs to some pseudo-holomorpic strip of symplectic area less than the Hofer distance between L and L'.</description><subject>Intersections</subject><subject>Manifolds (mathematics)</subject><subject>Spectra</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8ElML0rMS89MzFPwzCtJLSpOTS7JzM8rVkjMS1EoyUhVCE4tKgKSBUDxosQcILewNDUvOZWHgTUtMac4lRdKczMou7mGOHvoFhTlA1UUl8Rn5ZcW5QGl4o0MLA1NTMzNjEyNiVMFAEuQNhc</recordid><startdate>20070721</startdate><enddate>20070721</enddate><creator>Barraud, J F</creator><creator>Cornea, O</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20070721</creationdate><title>Lagrangian Intersections and the Serre Spectral Sequence</title><author>Barraud, J F ; Cornea, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20914476253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Intersections</topic><topic>Manifolds (mathematics)</topic><topic>Spectra</topic><toplevel>online_resources</toplevel><creatorcontrib>Barraud, J F</creatorcontrib><creatorcontrib>Cornea, O</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barraud, J F</au><au>Cornea, O</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Lagrangian Intersections and the Serre Spectral Sequence</atitle><jtitle>arXiv.org</jtitle><date>2007-07-21</date><risdate>2007</risdate><eissn>2331-8422</eissn><abstract>For a transversal pair of closed Lagrangian submanifolds L, L' of a symplectic manifold M so that \(\pi_{1}(L)=\pi_{1}(L')=0=c_{1}|_{\pi_{2}(M)}=\omega|_{\pi_{2}(M)}\) and a generic almost complex structure J we construct an invariant with a high homotopical content which consists in the pages of order \(\geq 2\) of a spectral sequence whose differentials provide an algebraic measure of the high-dimensional moduli spaces of pseudo-holomorpic strips of finite energy that join L and L'. When L and L' are hamiltonian isotopic, these pages coincide (up to a horizontal translation) with the terms of the Serre-spectral sequence of the path-loop fibration \(\Omega L\to PL\to L\). Among other applications we prove that, in this case, each point \(x\in L\backslash L'\) belongs to some pseudo-holomorpic strip of symplectic area less than the Hofer distance between L and L'.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2007-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2091447625 |
source | Free E- Journals |
subjects | Intersections Manifolds (mathematics) Spectra |
title | Lagrangian Intersections and the Serre Spectral Sequence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Lagrangian%20Intersections%20and%20the%20Serre%20Spectral%20Sequence&rft.jtitle=arXiv.org&rft.au=Barraud,%20J%20F&rft.date=2007-07-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2091447625%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2091447625&rft_id=info:pmid/&rfr_iscdi=true |