Rectangular Layouts and Contact Graphs
Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2006-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Buchsbaum, Adam L Gansner, Emden R Procopiuc, Cecilia M Venkatasubramanian, Suresh |
description | Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct \(O(n^2)\)-area rectangular layouts for general contact graphs and \(O(n\log n)\)-area rectangular layouts for trees. (For trees, this is an \(O(\log n)\)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require \(\Omega(n^2)\) (rsp., \(\Omega(n\log n)\)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2091246208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091246208</sourcerecordid><originalsourceid>FETCH-proquest_journals_20912462083</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQC0pNLknMSy_NSSxS8EmszC8tKVZIzEtRcM7PK0lMLlFwL0osyCjmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNLQyMTMyMDC2PiVAEAMpQvPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091246208</pqid></control><display><type>article</type><title>Rectangular Layouts and Contact Graphs</title><source>Free E- Journals</source><creator>Buchsbaum, Adam L ; Gansner, Emden R ; Procopiuc, Cecilia M ; Venkatasubramanian, Suresh</creator><creatorcontrib>Buchsbaum, Adam L ; Gansner, Emden R ; Procopiuc, Cecilia M ; Venkatasubramanian, Suresh</creatorcontrib><description>Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct \(O(n^2)\)-area rectangular layouts for general contact graphs and \(O(n\log n)\)-area rectangular layouts for trees. (For trees, this is an \(O(\log n)\)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require \(\Omega(n^2)\) (rsp., \(\Omega(n\log n)\)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computational geometry ; Geographic information systems ; Graphs ; Integrated circuits ; Layouts ; Optimization ; Rectangles ; Satellite navigation systems ; Very large scale integration</subject><ispartof>arXiv.org, 2006-11</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/cs/0611107.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Buchsbaum, Adam L</creatorcontrib><creatorcontrib>Gansner, Emden R</creatorcontrib><creatorcontrib>Procopiuc, Cecilia M</creatorcontrib><creatorcontrib>Venkatasubramanian, Suresh</creatorcontrib><title>Rectangular Layouts and Contact Graphs</title><title>arXiv.org</title><description>Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct \(O(n^2)\)-area rectangular layouts for general contact graphs and \(O(n\log n)\)-area rectangular layouts for trees. (For trees, this is an \(O(\log n)\)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require \(\Omega(n^2)\) (rsp., \(\Omega(n\log n)\)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.</description><subject>Algorithms</subject><subject>Computational geometry</subject><subject>Geographic information systems</subject><subject>Graphs</subject><subject>Integrated circuits</subject><subject>Layouts</subject><subject>Optimization</subject><subject>Rectangles</subject><subject>Satellite navigation systems</subject><subject>Very large scale integration</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQC0pNLknMSy_NSSxS8EmszC8tKVZIzEtRcM7PK0lMLlFwL0osyCjmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNLQyMTMyMDC2PiVAEAMpQvPA</recordid><startdate>20061121</startdate><enddate>20061121</enddate><creator>Buchsbaum, Adam L</creator><creator>Gansner, Emden R</creator><creator>Procopiuc, Cecilia M</creator><creator>Venkatasubramanian, Suresh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20061121</creationdate><title>Rectangular Layouts and Contact Graphs</title><author>Buchsbaum, Adam L ; Gansner, Emden R ; Procopiuc, Cecilia M ; Venkatasubramanian, Suresh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20912462083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Computational geometry</topic><topic>Geographic information systems</topic><topic>Graphs</topic><topic>Integrated circuits</topic><topic>Layouts</topic><topic>Optimization</topic><topic>Rectangles</topic><topic>Satellite navigation systems</topic><topic>Very large scale integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Buchsbaum, Adam L</creatorcontrib><creatorcontrib>Gansner, Emden R</creatorcontrib><creatorcontrib>Procopiuc, Cecilia M</creatorcontrib><creatorcontrib>Venkatasubramanian, Suresh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buchsbaum, Adam L</au><au>Gansner, Emden R</au><au>Procopiuc, Cecilia M</au><au>Venkatasubramanian, Suresh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Rectangular Layouts and Contact Graphs</atitle><jtitle>arXiv.org</jtitle><date>2006-11-21</date><risdate>2006</risdate><eissn>2331-8422</eissn><abstract>Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct \(O(n^2)\)-area rectangular layouts for general contact graphs and \(O(n\log n)\)-area rectangular layouts for trees. (For trees, this is an \(O(\log n)\)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require \(\Omega(n^2)\) (rsp., \(\Omega(n\log n)\)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2006-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2091246208 |
source | Free E- Journals |
subjects | Algorithms Computational geometry Geographic information systems Graphs Integrated circuits Layouts Optimization Rectangles Satellite navigation systems Very large scale integration |
title | Rectangular Layouts and Contact Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Rectangular%20Layouts%20and%20Contact%20Graphs&rft.jtitle=arXiv.org&rft.au=Buchsbaum,%20Adam%20L&rft.date=2006-11-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2091246208%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2091246208&rft_id=info:pmid/&rfr_iscdi=true |