Efficient Rank Reduction of Correlation Matrices

Geometric optimisation algorithms are developed that efficiently find the nearest low-rank correlation matrix. We show, in numerical tests, that our methods compare favourably to the existing methods in the literature. The connection with the Lagrange multiplier method is established, along with an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2005-01
Hauptverfasser: Grubisic, Igor, Pietersz, Raoul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Grubisic, Igor
Pietersz, Raoul
description Geometric optimisation algorithms are developed that efficiently find the nearest low-rank correlation matrix. We show, in numerical tests, that our methods compare favourably to the existing methods in the literature. The connection with the Lagrange multiplier method is established, along with an identification of whether a local minimum is a global minimum. An additional benefit of the geometric approach is that any weighted norm can be applied. The problem of finding the nearest low-rank correlation matrix occurs as part of the calibration of multi-factor interest rate market models to correlation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2091102331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091102331</sourcerecordid><originalsourceid>FETCH-proquest_journals_20911023313</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcE1Ly0zOTM0rUQhKzMtWCEpNKU0uyczPU8hPU3DOLypKzUkEc30TS4oyk1OLeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjA0tDQAGS5MXGqAFSGMtY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091102331</pqid></control><display><type>article</type><title>Efficient Rank Reduction of Correlation Matrices</title><source>Free E- Journals</source><creator>Grubisic, Igor ; Pietersz, Raoul</creator><creatorcontrib>Grubisic, Igor ; Pietersz, Raoul</creatorcontrib><description>Geometric optimisation algorithms are developed that efficiently find the nearest low-rank correlation matrix. We show, in numerical tests, that our methods compare favourably to the existing methods in the literature. The connection with the Lagrange multiplier method is established, along with an identification of whether a local minimum is a global minimum. An additional benefit of the geometric approach is that any weighted norm can be applied. The problem of finding the nearest low-rank correlation matrix occurs as part of the calibration of multi-factor interest rate market models to correlation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Correlation ; Correlation analysis ; Lagrange multiplier ; Optimization ; Test procedures</subject><ispartof>arXiv.org, 2005-01</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/cond-mat/0403477.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Grubisic, Igor</creatorcontrib><creatorcontrib>Pietersz, Raoul</creatorcontrib><title>Efficient Rank Reduction of Correlation Matrices</title><title>arXiv.org</title><description>Geometric optimisation algorithms are developed that efficiently find the nearest low-rank correlation matrix. We show, in numerical tests, that our methods compare favourably to the existing methods in the literature. The connection with the Lagrange multiplier method is established, along with an identification of whether a local minimum is a global minimum. An additional benefit of the geometric approach is that any weighted norm can be applied. The problem of finding the nearest low-rank correlation matrix occurs as part of the calibration of multi-factor interest rate market models to correlation.</description><subject>Algorithms</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Lagrange multiplier</subject><subject>Optimization</subject><subject>Test procedures</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcE1Ly0zOTM0rUQhKzMtWCEpNKU0uyczPU8hPU3DOLypKzUkEc30TS4oyk1OLeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjA0tDQAGS5MXGqAFSGMtY</recordid><startdate>20050125</startdate><enddate>20050125</enddate><creator>Grubisic, Igor</creator><creator>Pietersz, Raoul</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20050125</creationdate><title>Efficient Rank Reduction of Correlation Matrices</title><author>Grubisic, Igor ; Pietersz, Raoul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20911023313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Lagrange multiplier</topic><topic>Optimization</topic><topic>Test procedures</topic><toplevel>online_resources</toplevel><creatorcontrib>Grubisic, Igor</creatorcontrib><creatorcontrib>Pietersz, Raoul</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grubisic, Igor</au><au>Pietersz, Raoul</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Efficient Rank Reduction of Correlation Matrices</atitle><jtitle>arXiv.org</jtitle><date>2005-01-25</date><risdate>2005</risdate><eissn>2331-8422</eissn><abstract>Geometric optimisation algorithms are developed that efficiently find the nearest low-rank correlation matrix. We show, in numerical tests, that our methods compare favourably to the existing methods in the literature. The connection with the Lagrange multiplier method is established, along with an identification of whether a local minimum is a global minimum. An additional benefit of the geometric approach is that any weighted norm can be applied. The problem of finding the nearest low-rank correlation matrix occurs as part of the calibration of multi-factor interest rate market models to correlation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2005-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2091102331
source Free E- Journals
subjects Algorithms
Correlation
Correlation analysis
Lagrange multiplier
Optimization
Test procedures
title Efficient Rank Reduction of Correlation Matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A40%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Efficient%20Rank%20Reduction%20of%20Correlation%20Matrices&rft.jtitle=arXiv.org&rft.au=Grubisic,%20Igor&rft.date=2005-01-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2091102331%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2091102331&rft_id=info:pmid/&rfr_iscdi=true