Structural transitions and arrest of domain growth in sheared binary immiscible fluids and microemulsions
We investigate spinodal decomposition and structuring effects in binary immiscible and ternary amphiphilic fluid mixtures under shear by means of three dimensional lattice Boltzmann simulations. We show that the growth of individual fluid domains can be arrested by adding surfactant to the system, t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2007-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Harting, Jens Giupponi, Giovanni Coveney, Peter V |
description | We investigate spinodal decomposition and structuring effects in binary immiscible and ternary amphiphilic fluid mixtures under shear by means of three dimensional lattice Boltzmann simulations. We show that the growth of individual fluid domains can be arrested by adding surfactant to the system, thus forming a bicontinous microemulsion. We demonstrate that the maximum domain size and the time of arrest depend linearly on the concentration of amphiphile molecules. In addition, we find that for a well defined threshold value of amphiphile concentration, the maximum domain size and time of complete arrest do not change. For systems under constant and oscillatory shear we analyze domain growth rates in directions parallel and perpendicular to the applied shear. We find a structural transition from a sponge to a lamellar phase by applying a constant shear and the occurrence of tubular structures under oscillatory shear. The size of the resulting lamellae and tubes depends strongly on the amphiphile concentration, shear rate and shear frequency. |
doi_str_mv | 10.48550/arxiv.0701330 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2091065690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091065690</sourcerecordid><originalsourceid>FETCH-proquest_journals_20910656903</originalsourceid><addsrcrecordid>eNqNjc1OAkEQhCcmJhLlyrkTzmDvDLPA2WC86500u7PQZH6kZ0bx7V2jD-CpKqmvqpSaNbhcbazFR5IrfyxxjY0xeKMm2phmsVlpfaemOZ8RUbdrba2ZKH4tUrtShTwUoZi5cIoZKPZAIi4XSAP0KRBHOEr6LCcYXT45EtfDgSPJF3AInDs-eAeDr9z_9gN3klyoPv9MPqjbgXx20z-9V_Pn3dvTy-Jd0qWOR_tzqhLHaK9x22Br2y2a_1HfmqRPFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091065690</pqid></control><display><type>article</type><title>Structural transitions and arrest of domain growth in sheared binary immiscible fluids and microemulsions</title><source>Free E- Journals</source><creator>Harting, Jens ; Giupponi, Giovanni ; Coveney, Peter V</creator><creatorcontrib>Harting, Jens ; Giupponi, Giovanni ; Coveney, Peter V</creatorcontrib><description>We investigate spinodal decomposition and structuring effects in binary immiscible and ternary amphiphilic fluid mixtures under shear by means of three dimensional lattice Boltzmann simulations. We show that the growth of individual fluid domains can be arrested by adding surfactant to the system, thus forming a bicontinous microemulsion. We demonstrate that the maximum domain size and the time of arrest depend linearly on the concentration of amphiphile molecules. In addition, we find that for a well defined threshold value of amphiphile concentration, the maximum domain size and time of complete arrest do not change. For systems under constant and oscillatory shear we analyze domain growth rates in directions parallel and perpendicular to the applied shear. We find a structural transition from a sponge to a lamellar phase by applying a constant shear and the occurrence of tubular structures under oscillatory shear. The size of the resulting lamellae and tubes depends strongly on the amphiphile concentration, shear rate and shear frequency.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0701330</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Domains ; Lamellar structure ; Microemulsions ; Miscibility ; Shear rate ; Spinodal decomposition ; Tubes</subject><ispartof>arXiv.org, 2007-02</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/cond-mat/0701330.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Harting, Jens</creatorcontrib><creatorcontrib>Giupponi, Giovanni</creatorcontrib><creatorcontrib>Coveney, Peter V</creatorcontrib><title>Structural transitions and arrest of domain growth in sheared binary immiscible fluids and microemulsions</title><title>arXiv.org</title><description>We investigate spinodal decomposition and structuring effects in binary immiscible and ternary amphiphilic fluid mixtures under shear by means of three dimensional lattice Boltzmann simulations. We show that the growth of individual fluid domains can be arrested by adding surfactant to the system, thus forming a bicontinous microemulsion. We demonstrate that the maximum domain size and the time of arrest depend linearly on the concentration of amphiphile molecules. In addition, we find that for a well defined threshold value of amphiphile concentration, the maximum domain size and time of complete arrest do not change. For systems under constant and oscillatory shear we analyze domain growth rates in directions parallel and perpendicular to the applied shear. We find a structural transition from a sponge to a lamellar phase by applying a constant shear and the occurrence of tubular structures under oscillatory shear. The size of the resulting lamellae and tubes depends strongly on the amphiphile concentration, shear rate and shear frequency.</description><subject>Domains</subject><subject>Lamellar structure</subject><subject>Microemulsions</subject><subject>Miscibility</subject><subject>Shear rate</subject><subject>Spinodal decomposition</subject><subject>Tubes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjc1OAkEQhCcmJhLlyrkTzmDvDLPA2WC86500u7PQZH6kZ0bx7V2jD-CpKqmvqpSaNbhcbazFR5IrfyxxjY0xeKMm2phmsVlpfaemOZ8RUbdrba2ZKH4tUrtShTwUoZi5cIoZKPZAIi4XSAP0KRBHOEr6LCcYXT45EtfDgSPJF3AInDs-eAeDr9z_9gN3klyoPv9MPqjbgXx20z-9V_Pn3dvTy-Jd0qWOR_tzqhLHaK9x22Br2y2a_1HfmqRPFg</recordid><startdate>20070209</startdate><enddate>20070209</enddate><creator>Harting, Jens</creator><creator>Giupponi, Giovanni</creator><creator>Coveney, Peter V</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20070209</creationdate><title>Structural transitions and arrest of domain growth in sheared binary immiscible fluids and microemulsions</title><author>Harting, Jens ; Giupponi, Giovanni ; Coveney, Peter V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20910656903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Domains</topic><topic>Lamellar structure</topic><topic>Microemulsions</topic><topic>Miscibility</topic><topic>Shear rate</topic><topic>Spinodal decomposition</topic><topic>Tubes</topic><toplevel>online_resources</toplevel><creatorcontrib>Harting, Jens</creatorcontrib><creatorcontrib>Giupponi, Giovanni</creatorcontrib><creatorcontrib>Coveney, Peter V</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harting, Jens</au><au>Giupponi, Giovanni</au><au>Coveney, Peter V</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Structural transitions and arrest of domain growth in sheared binary immiscible fluids and microemulsions</atitle><jtitle>arXiv.org</jtitle><date>2007-02-09</date><risdate>2007</risdate><eissn>2331-8422</eissn><abstract>We investigate spinodal decomposition and structuring effects in binary immiscible and ternary amphiphilic fluid mixtures under shear by means of three dimensional lattice Boltzmann simulations. We show that the growth of individual fluid domains can be arrested by adding surfactant to the system, thus forming a bicontinous microemulsion. We demonstrate that the maximum domain size and the time of arrest depend linearly on the concentration of amphiphile molecules. In addition, we find that for a well defined threshold value of amphiphile concentration, the maximum domain size and time of complete arrest do not change. For systems under constant and oscillatory shear we analyze domain growth rates in directions parallel and perpendicular to the applied shear. We find a structural transition from a sponge to a lamellar phase by applying a constant shear and the occurrence of tubular structures under oscillatory shear. The size of the resulting lamellae and tubes depends strongly on the amphiphile concentration, shear rate and shear frequency.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0701330</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2007-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2091065690 |
source | Free E- Journals |
subjects | Domains Lamellar structure Microemulsions Miscibility Shear rate Spinodal decomposition Tubes |
title | Structural transitions and arrest of domain growth in sheared binary immiscible fluids and microemulsions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A43%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Structural%20transitions%20and%20arrest%20of%20domain%20growth%20in%20sheared%20binary%20immiscible%20fluids%20and%20microemulsions&rft.jtitle=arXiv.org&rft.au=Harting,%20Jens&rft.date=2007-02-09&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0701330&rft_dat=%3Cproquest%3E2091065690%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2091065690&rft_id=info:pmid/&rfr_iscdi=true |