Pressure‐Induced Emission Enhancement, Band‐Gap Narrowing, and Metallization of Halide Perovskite Cs3Bi2I9

Low‐toxicity, air‐stable bismuth‐based perovskite materials are attractive substitutes for lead halide perovskites in photovoltaic and optoelectronic devices. The structural, optical, and electrical property changes of zero‐dimensional perovskite Cs3Bi2I9 resulting from lattice compression is presen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2018-08, Vol.57 (35), p.11213-11217
Hauptverfasser: Zhang, Long, Liu, Chunming, Wang, Lingrui, Liu, Cailong, Wang, Kai, Zou, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11217
container_issue 35
container_start_page 11213
container_title Angewandte Chemie International Edition
container_volume 57
creator Zhang, Long
Liu, Chunming
Wang, Lingrui
Liu, Cailong
Wang, Kai
Zou, Bo
description Low‐toxicity, air‐stable bismuth‐based perovskite materials are attractive substitutes for lead halide perovskites in photovoltaic and optoelectronic devices. The structural, optical, and electrical property changes of zero‐dimensional perovskite Cs3Bi2I9 resulting from lattice compression is presented. An emission enhancement under mild pressure is attributed to the increase in exciton binding energy. Unprecedented band gap narrowing originated from Bi−I bond contraction, and the decrease in bridging Bi‐I‐Bi angle enhances metal halide orbital overlap, thereby breaking through the Shockley–Queisser limit under relatively low pressure. Pressure‐induced structural evolutions correlate well with changes in optical properties, and the changes are reversible upon decompression. Considerable resistance reduction implies a semiconductor‐to‐conductor transition at ca. 28 GPa, and the final confirmed metallic character by electrical experiments indicates a wholly new electronic property. High pressure is used to modify the optical and electrical properties of zero‐dimensional halide perovskite. The pressure response of Cs3Bi2I9 is significant under pressure along with phenomenal photoluminescence (PL) enhancement, band‐gap narrowing, and metallization, promoting its photovoltaic applications by better materials‐by‐design.
doi_str_mv 10.1002/anie.201804310
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2091003259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091003259</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3360-d9800aae1430a8e67687a497b9b6144a6906fdb6aeae41f6caecb53b3dadce3e3</originalsourceid><addsrcrecordid>eNo9kMtOwkAUQCdGExHdup7ELcWZTjvtLIEgNEFkoevmtr3FwTLFmVaCKz_Bb_RLLMG4uo-c-8gh5JazIWfMvwejcegzHrNAcHZGejz0uSeiSJx3eSCEF8UhvyRXzm06Po6Z7BGzsuhca_Hn6zsxRZtjQadb7ZyuDZ2aVzA5btE0AzoGU3TQDHZ0CdbWe23WA9o16SM2UFX6E5rjUF3SOVS6QLpCW3-4N90gnTgx1n6irslFCZXDm7_YJy8P0-fJ3Fs8zZLJaOGthZDMK1TMGAB2XzOIUUYyjiBQUaYyyYMApGKyLDIJCBjwUuaAeRaKTBRQ5ChQ9Mndae_O1u8tuibd1K013cnUZ6rTJfxQdZQ6UXtd4SHdWb0Fe0g5S49C06PQ9F9oOlom0_9K_ALDhm7B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091003259</pqid></control><display><type>article</type><title>Pressure‐Induced Emission Enhancement, Band‐Gap Narrowing, and Metallization of Halide Perovskite Cs3Bi2I9</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Long ; Liu, Chunming ; Wang, Lingrui ; Liu, Cailong ; Wang, Kai ; Zou, Bo</creator><creatorcontrib>Zhang, Long ; Liu, Chunming ; Wang, Lingrui ; Liu, Cailong ; Wang, Kai ; Zou, Bo</creatorcontrib><description>Low‐toxicity, air‐stable bismuth‐based perovskite materials are attractive substitutes for lead halide perovskites in photovoltaic and optoelectronic devices. The structural, optical, and electrical property changes of zero‐dimensional perovskite Cs3Bi2I9 resulting from lattice compression is presented. An emission enhancement under mild pressure is attributed to the increase in exciton binding energy. Unprecedented band gap narrowing originated from Bi−I bond contraction, and the decrease in bridging Bi‐I‐Bi angle enhances metal halide orbital overlap, thereby breaking through the Shockley–Queisser limit under relatively low pressure. Pressure‐induced structural evolutions correlate well with changes in optical properties, and the changes are reversible upon decompression. Considerable resistance reduction implies a semiconductor‐to‐conductor transition at ca. 28 GPa, and the final confirmed metallic character by electrical experiments indicates a wholly new electronic property. High pressure is used to modify the optical and electrical properties of zero‐dimensional halide perovskite. The pressure response of Cs3Bi2I9 is significant under pressure along with phenomenal photoluminescence (PL) enhancement, band‐gap narrowing, and metallization, promoting its photovoltaic applications by better materials‐by‐design.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201804310</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>band gap ; Bismuth ; Compression ; Conductors ; Contraction ; Decompression ; Dimensional changes ; Emission ; Emissions ; Energy gap ; Low pressure ; metallization ; Metallizing ; Optical properties ; Optoelectronic devices ; Perovskites ; photoluminescence ; Photovoltaics ; Pressure ; Toxicity</subject><ispartof>Angewandte Chemie International Edition, 2018-08, Vol.57 (35), p.11213-11217</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4721-6717 ; 0000-0002-3215-1255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201804310$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201804310$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Liu, Chunming</creatorcontrib><creatorcontrib>Wang, Lingrui</creatorcontrib><creatorcontrib>Liu, Cailong</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Zou, Bo</creatorcontrib><title>Pressure‐Induced Emission Enhancement, Band‐Gap Narrowing, and Metallization of Halide Perovskite Cs3Bi2I9</title><title>Angewandte Chemie International Edition</title><description>Low‐toxicity, air‐stable bismuth‐based perovskite materials are attractive substitutes for lead halide perovskites in photovoltaic and optoelectronic devices. The structural, optical, and electrical property changes of zero‐dimensional perovskite Cs3Bi2I9 resulting from lattice compression is presented. An emission enhancement under mild pressure is attributed to the increase in exciton binding energy. Unprecedented band gap narrowing originated from Bi−I bond contraction, and the decrease in bridging Bi‐I‐Bi angle enhances metal halide orbital overlap, thereby breaking through the Shockley–Queisser limit under relatively low pressure. Pressure‐induced structural evolutions correlate well with changes in optical properties, and the changes are reversible upon decompression. Considerable resistance reduction implies a semiconductor‐to‐conductor transition at ca. 28 GPa, and the final confirmed metallic character by electrical experiments indicates a wholly new electronic property. High pressure is used to modify the optical and electrical properties of zero‐dimensional halide perovskite. The pressure response of Cs3Bi2I9 is significant under pressure along with phenomenal photoluminescence (PL) enhancement, band‐gap narrowing, and metallization, promoting its photovoltaic applications by better materials‐by‐design.</description><subject>band gap</subject><subject>Bismuth</subject><subject>Compression</subject><subject>Conductors</subject><subject>Contraction</subject><subject>Decompression</subject><subject>Dimensional changes</subject><subject>Emission</subject><subject>Emissions</subject><subject>Energy gap</subject><subject>Low pressure</subject><subject>metallization</subject><subject>Metallizing</subject><subject>Optical properties</subject><subject>Optoelectronic devices</subject><subject>Perovskites</subject><subject>photoluminescence</subject><subject>Photovoltaics</subject><subject>Pressure</subject><subject>Toxicity</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwkAUQCdGExHdup7ELcWZTjvtLIEgNEFkoevmtr3FwTLFmVaCKz_Bb_RLLMG4uo-c-8gh5JazIWfMvwejcegzHrNAcHZGejz0uSeiSJx3eSCEF8UhvyRXzm06Po6Z7BGzsuhca_Hn6zsxRZtjQadb7ZyuDZ2aVzA5btE0AzoGU3TQDHZ0CdbWe23WA9o16SM2UFX6E5rjUF3SOVS6QLpCW3-4N90gnTgx1n6irslFCZXDm7_YJy8P0-fJ3Fs8zZLJaOGthZDMK1TMGAB2XzOIUUYyjiBQUaYyyYMApGKyLDIJCBjwUuaAeRaKTBRQ5ChQ9Mndae_O1u8tuibd1K013cnUZ6rTJfxQdZQ6UXtd4SHdWb0Fe0g5S49C06PQ9F9oOlom0_9K_ALDhm7B</recordid><startdate>20180827</startdate><enddate>20180827</enddate><creator>Zhang, Long</creator><creator>Liu, Chunming</creator><creator>Wang, Lingrui</creator><creator>Liu, Cailong</creator><creator>Wang, Kai</creator><creator>Zou, Bo</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-4721-6717</orcidid><orcidid>https://orcid.org/0000-0002-3215-1255</orcidid></search><sort><creationdate>20180827</creationdate><title>Pressure‐Induced Emission Enhancement, Band‐Gap Narrowing, and Metallization of Halide Perovskite Cs3Bi2I9</title><author>Zhang, Long ; Liu, Chunming ; Wang, Lingrui ; Liu, Cailong ; Wang, Kai ; Zou, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3360-d9800aae1430a8e67687a497b9b6144a6906fdb6aeae41f6caecb53b3dadce3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>band gap</topic><topic>Bismuth</topic><topic>Compression</topic><topic>Conductors</topic><topic>Contraction</topic><topic>Decompression</topic><topic>Dimensional changes</topic><topic>Emission</topic><topic>Emissions</topic><topic>Energy gap</topic><topic>Low pressure</topic><topic>metallization</topic><topic>Metallizing</topic><topic>Optical properties</topic><topic>Optoelectronic devices</topic><topic>Perovskites</topic><topic>photoluminescence</topic><topic>Photovoltaics</topic><topic>Pressure</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Liu, Chunming</creatorcontrib><creatorcontrib>Wang, Lingrui</creatorcontrib><creatorcontrib>Liu, Cailong</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Zou, Bo</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Long</au><au>Liu, Chunming</au><au>Wang, Lingrui</au><au>Liu, Cailong</au><au>Wang, Kai</au><au>Zou, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pressure‐Induced Emission Enhancement, Band‐Gap Narrowing, and Metallization of Halide Perovskite Cs3Bi2I9</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2018-08-27</date><risdate>2018</risdate><volume>57</volume><issue>35</issue><spage>11213</spage><epage>11217</epage><pages>11213-11217</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Low‐toxicity, air‐stable bismuth‐based perovskite materials are attractive substitutes for lead halide perovskites in photovoltaic and optoelectronic devices. The structural, optical, and electrical property changes of zero‐dimensional perovskite Cs3Bi2I9 resulting from lattice compression is presented. An emission enhancement under mild pressure is attributed to the increase in exciton binding energy. Unprecedented band gap narrowing originated from Bi−I bond contraction, and the decrease in bridging Bi‐I‐Bi angle enhances metal halide orbital overlap, thereby breaking through the Shockley–Queisser limit under relatively low pressure. Pressure‐induced structural evolutions correlate well with changes in optical properties, and the changes are reversible upon decompression. Considerable resistance reduction implies a semiconductor‐to‐conductor transition at ca. 28 GPa, and the final confirmed metallic character by electrical experiments indicates a wholly new electronic property. High pressure is used to modify the optical and electrical properties of zero‐dimensional halide perovskite. The pressure response of Cs3Bi2I9 is significant under pressure along with phenomenal photoluminescence (PL) enhancement, band‐gap narrowing, and metallization, promoting its photovoltaic applications by better materials‐by‐design.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.201804310</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4721-6717</orcidid><orcidid>https://orcid.org/0000-0002-3215-1255</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2018-08, Vol.57 (35), p.11213-11217
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_journals_2091003259
source Wiley Online Library Journals Frontfile Complete
subjects band gap
Bismuth
Compression
Conductors
Contraction
Decompression
Dimensional changes
Emission
Emissions
Energy gap
Low pressure
metallization
Metallizing
Optical properties
Optoelectronic devices
Perovskites
photoluminescence
Photovoltaics
Pressure
Toxicity
title Pressure‐Induced Emission Enhancement, Band‐Gap Narrowing, and Metallization of Halide Perovskite Cs3Bi2I9
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pressure%E2%80%90Induced%20Emission%20Enhancement,%20Band%E2%80%90Gap%20Narrowing,%20and%20Metallization%20of%20Halide%20Perovskite%20Cs3Bi2I9&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhang,%20Long&rft.date=2018-08-27&rft.volume=57&rft.issue=35&rft.spage=11213&rft.epage=11217&rft.pages=11213-11217&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201804310&rft_dat=%3Cproquest_wiley%3E2091003259%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2091003259&rft_id=info:pmid/&rfr_iscdi=true