Optical Photometry of GRB 021004: The First Month

We present U,B,V,R_C,and I_C photometry of the optical afterglow of the gamma-ray burst GRB 021004 taken at the Nordic Optical Telescope between approximately eight hours and 30 days after the burst. This data is combined with an analysis of the 87 ksec Chandra X-ray observations of GRB 021004 taken...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2003-02
Hauptverfasser: Holland, Stephen T, Weidinger, Michael, Fynbo, Johan P U, Gorosabel, Javier, Hjorth, Jens, Pedersen, Kristian, Javier Mendez Alvarez, Augusteijn, Thomas, Castro Cerón, J M, Castro-Tirado, Alberto, Dahle, Haakon, Egholm, M P, Jakobsson, Pall, Jensen, Brian L, Levan, Andrew, Moller, Palle, Pedersen, Holger, Pursimo, Tapio, Ruiz-Lapuente, Pilar, Thomsen, Bjarne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Holland, Stephen T
Weidinger, Michael
Fynbo, Johan P U
Gorosabel, Javier
Hjorth, Jens
Pedersen, Kristian
Javier Mendez Alvarez
Augusteijn, Thomas
Castro Cerón, J M
Castro-Tirado, Alberto
Dahle, Haakon
Egholm, M P
Jakobsson, Pall
Jensen, Brian L
Levan, Andrew
Moller, Palle
Pedersen, Holger
Pursimo, Tapio
Ruiz-Lapuente, Pilar
Thomsen, Bjarne
description We present U,B,V,R_C,and I_C photometry of the optical afterglow of the gamma-ray burst GRB 021004 taken at the Nordic Optical Telescope between approximately eight hours and 30 days after the burst. This data is combined with an analysis of the 87 ksec Chandra X-ray observations of GRB 021004 taken at a mean epoch of 33 hours after the burst to investigate the nature of this GRB. We find an intrinsic spectral slope at optical wavelengths of beta_UH = 0.39 +/- 0.12 and an X-ray slope of beta_X = 0.94 +/- 0.03. There is no evidence for colour evolution between 8.5 hours and 5.5 days after the burst. The optical decay becomes steeper approximately five days after the burst. This appears to be a gradual break due to the onset of sideways expansion in a collimated outflow. Our data suggest that the extra-galactic extinction along the line of sight to the burst is between A_V = 0.3 and A_V = 0.5 and has an extinction law similar to that of the Small Magellanic Cloud. The optical and X-ray data are consistent with a relativistic fireball with the shocked electrons being in the slow cooling regime and having an electron index of p = 1.9 +/- 0.1. The burst occurred in an ambient medium that is homogeneous on scales larger than approximately 10e18 cm but inhomogeneous on smaller scales. The mean particle density is similar to what is seen for other bursts (0.1 < n < 100 cm^{-3}). Our results support the idea that the brightening seen approximately 0.1 days was due to interaction with a clumpy ambient medium within 10^{17} and 10^{18} cm of the progenitor. The agreement between the predicted optical decay and that observed approximately ten minutes after the burst suggests that the physical mechanism controlling the observed flux approximately ten minutes is the same as the one operating at t > 0.5 days.
doi_str_mv 10.48550/arxiv.0211094
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2090984794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090984794</sourcerecordid><originalsourceid>FETCH-proquest_journals_20909847943</originalsourceid><addsrcrecordid>eNqNi08LgjAcQEcQJOW186Cz9tu_dB2LrEsU4V1GTFTM2Tajvn0e-gCd3uG9h9CSQMxTIWCt7Lt-xUAJAcknKKCMkSjllM5Q6FwDAHSTUCFYgMil9_VdtfhaGW8e2tsPNiU-3nZ4_AH4FueVxlltncdn0_lqgaalap0Of5yjVXbI96eot-Y5aOeLxgy2G1VBQYJMeSI5-6_6AqfUNtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090984794</pqid></control><display><type>article</type><title>Optical Photometry of GRB 021004: The First Month</title><source>Free E- Journals</source><creator>Holland, Stephen T ; Weidinger, Michael ; Fynbo, Johan P U ; Gorosabel, Javier ; Hjorth, Jens ; Pedersen, Kristian ; Javier Mendez Alvarez ; Augusteijn, Thomas ; Castro Cerón, J M ; Castro-Tirado, Alberto ; Dahle, Haakon ; Egholm, M P ; Jakobsson, Pall ; Jensen, Brian L ; Levan, Andrew ; Moller, Palle ; Pedersen, Holger ; Pursimo, Tapio ; Ruiz-Lapuente, Pilar ; Thomsen, Bjarne</creator><creatorcontrib>Holland, Stephen T ; Weidinger, Michael ; Fynbo, Johan P U ; Gorosabel, Javier ; Hjorth, Jens ; Pedersen, Kristian ; Javier Mendez Alvarez ; Augusteijn, Thomas ; Castro Cerón, J M ; Castro-Tirado, Alberto ; Dahle, Haakon ; Egholm, M P ; Jakobsson, Pall ; Jensen, Brian L ; Levan, Andrew ; Moller, Palle ; Pedersen, Holger ; Pursimo, Tapio ; Ruiz-Lapuente, Pilar ; Thomsen, Bjarne</creatorcontrib><description>We present U,B,V,R_C,and I_C photometry of the optical afterglow of the gamma-ray burst GRB 021004 taken at the Nordic Optical Telescope between approximately eight hours and 30 days after the burst. This data is combined with an analysis of the 87 ksec Chandra X-ray observations of GRB 021004 taken at a mean epoch of 33 hours after the burst to investigate the nature of this GRB. We find an intrinsic spectral slope at optical wavelengths of beta_UH = 0.39 +/- 0.12 and an X-ray slope of beta_X = 0.94 +/- 0.03. There is no evidence for colour evolution between 8.5 hours and 5.5 days after the burst. The optical decay becomes steeper approximately five days after the burst. This appears to be a gradual break due to the onset of sideways expansion in a collimated outflow. Our data suggest that the extra-galactic extinction along the line of sight to the burst is between A_V = 0.3 and A_V = 0.5 and has an extinction law similar to that of the Small Magellanic Cloud. The optical and X-ray data are consistent with a relativistic fireball with the shocked electrons being in the slow cooling regime and having an electron index of p = 1.9 +/- 0.1. The burst occurred in an ambient medium that is homogeneous on scales larger than approximately 10e18 cm but inhomogeneous on smaller scales. The mean particle density is similar to what is seen for other bursts (0.1 &lt; n &lt; 100 cm^{-3}). Our results support the idea that the brightening seen approximately 0.1 days was due to interaction with a clumpy ambient medium within 10^{17} and 10^{18} cm of the progenitor. The agreement between the predicted optical decay and that observed approximately ten minutes after the burst suggests that the physical mechanism controlling the observed flux approximately ten minutes is the same as the one operating at t &gt; 0.5 days.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0211094</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Beta rays ; Biological evolution ; Brightening ; Collimation ; Decay ; Gamma ray bursts ; Gamma rays ; Interstellar extinction ; Magellanic clouds ; Outflow ; Particle density (concentration) ; Photometry</subject><ispartof>arXiv.org, 2003-02</ispartof><rights>2003. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Holland, Stephen T</creatorcontrib><creatorcontrib>Weidinger, Michael</creatorcontrib><creatorcontrib>Fynbo, Johan P U</creatorcontrib><creatorcontrib>Gorosabel, Javier</creatorcontrib><creatorcontrib>Hjorth, Jens</creatorcontrib><creatorcontrib>Pedersen, Kristian</creatorcontrib><creatorcontrib>Javier Mendez Alvarez</creatorcontrib><creatorcontrib>Augusteijn, Thomas</creatorcontrib><creatorcontrib>Castro Cerón, J M</creatorcontrib><creatorcontrib>Castro-Tirado, Alberto</creatorcontrib><creatorcontrib>Dahle, Haakon</creatorcontrib><creatorcontrib>Egholm, M P</creatorcontrib><creatorcontrib>Jakobsson, Pall</creatorcontrib><creatorcontrib>Jensen, Brian L</creatorcontrib><creatorcontrib>Levan, Andrew</creatorcontrib><creatorcontrib>Moller, Palle</creatorcontrib><creatorcontrib>Pedersen, Holger</creatorcontrib><creatorcontrib>Pursimo, Tapio</creatorcontrib><creatorcontrib>Ruiz-Lapuente, Pilar</creatorcontrib><creatorcontrib>Thomsen, Bjarne</creatorcontrib><title>Optical Photometry of GRB 021004: The First Month</title><title>arXiv.org</title><description>We present U,B,V,R_C,and I_C photometry of the optical afterglow of the gamma-ray burst GRB 021004 taken at the Nordic Optical Telescope between approximately eight hours and 30 days after the burst. This data is combined with an analysis of the 87 ksec Chandra X-ray observations of GRB 021004 taken at a mean epoch of 33 hours after the burst to investigate the nature of this GRB. We find an intrinsic spectral slope at optical wavelengths of beta_UH = 0.39 +/- 0.12 and an X-ray slope of beta_X = 0.94 +/- 0.03. There is no evidence for colour evolution between 8.5 hours and 5.5 days after the burst. The optical decay becomes steeper approximately five days after the burst. This appears to be a gradual break due to the onset of sideways expansion in a collimated outflow. Our data suggest that the extra-galactic extinction along the line of sight to the burst is between A_V = 0.3 and A_V = 0.5 and has an extinction law similar to that of the Small Magellanic Cloud. The optical and X-ray data are consistent with a relativistic fireball with the shocked electrons being in the slow cooling regime and having an electron index of p = 1.9 +/- 0.1. The burst occurred in an ambient medium that is homogeneous on scales larger than approximately 10e18 cm but inhomogeneous on smaller scales. The mean particle density is similar to what is seen for other bursts (0.1 &lt; n &lt; 100 cm^{-3}). Our results support the idea that the brightening seen approximately 0.1 days was due to interaction with a clumpy ambient medium within 10^{17} and 10^{18} cm of the progenitor. The agreement between the predicted optical decay and that observed approximately ten minutes after the burst suggests that the physical mechanism controlling the observed flux approximately ten minutes is the same as the one operating at t &gt; 0.5 days.</description><subject>Beta rays</subject><subject>Biological evolution</subject><subject>Brightening</subject><subject>Collimation</subject><subject>Decay</subject><subject>Gamma ray bursts</subject><subject>Gamma rays</subject><subject>Interstellar extinction</subject><subject>Magellanic clouds</subject><subject>Outflow</subject><subject>Particle density (concentration)</subject><subject>Photometry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi08LgjAcQEcQJOW186Cz9tu_dB2LrEsU4V1GTFTM2Tajvn0e-gCd3uG9h9CSQMxTIWCt7Lt-xUAJAcknKKCMkSjllM5Q6FwDAHSTUCFYgMil9_VdtfhaGW8e2tsPNiU-3nZ4_AH4FueVxlltncdn0_lqgaalap0Of5yjVXbI96eot-Y5aOeLxgy2G1VBQYJMeSI5-6_6AqfUNtg</recordid><startdate>20030212</startdate><enddate>20030212</enddate><creator>Holland, Stephen T</creator><creator>Weidinger, Michael</creator><creator>Fynbo, Johan P U</creator><creator>Gorosabel, Javier</creator><creator>Hjorth, Jens</creator><creator>Pedersen, Kristian</creator><creator>Javier Mendez Alvarez</creator><creator>Augusteijn, Thomas</creator><creator>Castro Cerón, J M</creator><creator>Castro-Tirado, Alberto</creator><creator>Dahle, Haakon</creator><creator>Egholm, M P</creator><creator>Jakobsson, Pall</creator><creator>Jensen, Brian L</creator><creator>Levan, Andrew</creator><creator>Moller, Palle</creator><creator>Pedersen, Holger</creator><creator>Pursimo, Tapio</creator><creator>Ruiz-Lapuente, Pilar</creator><creator>Thomsen, Bjarne</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20030212</creationdate><title>Optical Photometry of GRB 021004: The First Month</title><author>Holland, Stephen T ; Weidinger, Michael ; Fynbo, Johan P U ; Gorosabel, Javier ; Hjorth, Jens ; Pedersen, Kristian ; Javier Mendez Alvarez ; Augusteijn, Thomas ; Castro Cerón, J M ; Castro-Tirado, Alberto ; Dahle, Haakon ; Egholm, M P ; Jakobsson, Pall ; Jensen, Brian L ; Levan, Andrew ; Moller, Palle ; Pedersen, Holger ; Pursimo, Tapio ; Ruiz-Lapuente, Pilar ; Thomsen, Bjarne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20909847943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Beta rays</topic><topic>Biological evolution</topic><topic>Brightening</topic><topic>Collimation</topic><topic>Decay</topic><topic>Gamma ray bursts</topic><topic>Gamma rays</topic><topic>Interstellar extinction</topic><topic>Magellanic clouds</topic><topic>Outflow</topic><topic>Particle density (concentration)</topic><topic>Photometry</topic><toplevel>online_resources</toplevel><creatorcontrib>Holland, Stephen T</creatorcontrib><creatorcontrib>Weidinger, Michael</creatorcontrib><creatorcontrib>Fynbo, Johan P U</creatorcontrib><creatorcontrib>Gorosabel, Javier</creatorcontrib><creatorcontrib>Hjorth, Jens</creatorcontrib><creatorcontrib>Pedersen, Kristian</creatorcontrib><creatorcontrib>Javier Mendez Alvarez</creatorcontrib><creatorcontrib>Augusteijn, Thomas</creatorcontrib><creatorcontrib>Castro Cerón, J M</creatorcontrib><creatorcontrib>Castro-Tirado, Alberto</creatorcontrib><creatorcontrib>Dahle, Haakon</creatorcontrib><creatorcontrib>Egholm, M P</creatorcontrib><creatorcontrib>Jakobsson, Pall</creatorcontrib><creatorcontrib>Jensen, Brian L</creatorcontrib><creatorcontrib>Levan, Andrew</creatorcontrib><creatorcontrib>Moller, Palle</creatorcontrib><creatorcontrib>Pedersen, Holger</creatorcontrib><creatorcontrib>Pursimo, Tapio</creatorcontrib><creatorcontrib>Ruiz-Lapuente, Pilar</creatorcontrib><creatorcontrib>Thomsen, Bjarne</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holland, Stephen T</au><au>Weidinger, Michael</au><au>Fynbo, Johan P U</au><au>Gorosabel, Javier</au><au>Hjorth, Jens</au><au>Pedersen, Kristian</au><au>Javier Mendez Alvarez</au><au>Augusteijn, Thomas</au><au>Castro Cerón, J M</au><au>Castro-Tirado, Alberto</au><au>Dahle, Haakon</au><au>Egholm, M P</au><au>Jakobsson, Pall</au><au>Jensen, Brian L</au><au>Levan, Andrew</au><au>Moller, Palle</au><au>Pedersen, Holger</au><au>Pursimo, Tapio</au><au>Ruiz-Lapuente, Pilar</au><au>Thomsen, Bjarne</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Optical Photometry of GRB 021004: The First Month</atitle><jtitle>arXiv.org</jtitle><date>2003-02-12</date><risdate>2003</risdate><eissn>2331-8422</eissn><abstract>We present U,B,V,R_C,and I_C photometry of the optical afterglow of the gamma-ray burst GRB 021004 taken at the Nordic Optical Telescope between approximately eight hours and 30 days after the burst. This data is combined with an analysis of the 87 ksec Chandra X-ray observations of GRB 021004 taken at a mean epoch of 33 hours after the burst to investigate the nature of this GRB. We find an intrinsic spectral slope at optical wavelengths of beta_UH = 0.39 +/- 0.12 and an X-ray slope of beta_X = 0.94 +/- 0.03. There is no evidence for colour evolution between 8.5 hours and 5.5 days after the burst. The optical decay becomes steeper approximately five days after the burst. This appears to be a gradual break due to the onset of sideways expansion in a collimated outflow. Our data suggest that the extra-galactic extinction along the line of sight to the burst is between A_V = 0.3 and A_V = 0.5 and has an extinction law similar to that of the Small Magellanic Cloud. The optical and X-ray data are consistent with a relativistic fireball with the shocked electrons being in the slow cooling regime and having an electron index of p = 1.9 +/- 0.1. The burst occurred in an ambient medium that is homogeneous on scales larger than approximately 10e18 cm but inhomogeneous on smaller scales. The mean particle density is similar to what is seen for other bursts (0.1 &lt; n &lt; 100 cm^{-3}). Our results support the idea that the brightening seen approximately 0.1 days was due to interaction with a clumpy ambient medium within 10^{17} and 10^{18} cm of the progenitor. The agreement between the predicted optical decay and that observed approximately ten minutes after the burst suggests that the physical mechanism controlling the observed flux approximately ten minutes is the same as the one operating at t &gt; 0.5 days.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0211094</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2003-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2090984794
source Free E- Journals
subjects Beta rays
Biological evolution
Brightening
Collimation
Decay
Gamma ray bursts
Gamma rays
Interstellar extinction
Magellanic clouds
Outflow
Particle density (concentration)
Photometry
title Optical Photometry of GRB 021004: The First Month
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Optical%20Photometry%20of%20GRB%20021004:%20The%20First%20Month&rft.jtitle=arXiv.org&rft.au=Holland,%20Stephen%20T&rft.date=2003-02-12&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0211094&rft_dat=%3Cproquest%3E2090984794%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090984794&rft_id=info:pmid/&rfr_iscdi=true