Hierarchical hollow, sea-urchin-like and porous Ni0.5Co0.5Se2 as advanced battery material for hybrid supercapacitors

Hierarchical Ni0.5Co0.5Se2 containing a hollow inner structure, with a 3D sea-urchin-like overall morphology and very porous nanowires, was first synthesized by a low-temperature selenization method. Benefiting from such a hierarchical structure, the Ni0.5Co0.5Se2 demonstrates a much improved specif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (33), p.16205-16212
Hauptverfasser: Song, Xinxin, Huang, Chenghao, Qin, Yanliang, Li, Hongliang, Hai Chao Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16212
container_issue 33
container_start_page 16205
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 6
creator Song, Xinxin
Huang, Chenghao
Qin, Yanliang
Li, Hongliang
Hai Chao Chen
description Hierarchical Ni0.5Co0.5Se2 containing a hollow inner structure, with a 3D sea-urchin-like overall morphology and very porous nanowires, was first synthesized by a low-temperature selenization method. Benefiting from such a hierarchical structure, the Ni0.5Co0.5Se2 demonstrates a much improved specific area to provide more electroactive sites and a self-supporting 3D structure to make good contact with the electrolyte. More significantly, it is found that the bimetal Ni0.5Co0.5Se2 combines electrochemical advantages from both Ni and Co, showing high electroactivity and low charge transfer resistance. As a result, the hierarchical Ni0.5Co0.5Se2 exhibits a higher specific capacity of 524 C g−1 at 1 A g−1, a superior rate performance of 56% capacity retention when the specific current increases by 50 times and excellent cycling stability of 91% capacity retention after 3500 cycles. In addition, an Ni0.5Co0.5Se2//reduced graphene oxide (RGO) HSC achieves a high specific energy of 37.5 W h kg−1, an ultrahigh specific power of 22.2 kW kg−1 and an outstanding cycling stability up to 10 000 cycles, further confirming the superior performance of hierarchical Ni0.5Co0.5Se2.
doi_str_mv 10.1039/c8ta05037f
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2090826470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090826470</sourcerecordid><originalsourceid>FETCH-LOGICAL-g220t-67c78d79a4b718467f4a5146bb409b340c9e120c3441a61c46e3f7b7d925fceb3</originalsourceid><addsrcrecordid>eNo9jT1PwzAYhC0EElXpwi-wxErK64_Y8YgqoEgVDMBcvXYc6hLiYCeg_nuCQNxw9-iGO0LOGSwZCHPlqgGhBKGbIzLjExVaGnX8z1V1ShY572FSBaCMmZFxHXzC5HbBYUt3sW3j1yXNHovxp-yKNrx5il1N-5jimOlDgGW5ipM9eU4xU6w_sXO-phaHwacDfccpwrTWxER3B5tCTfPY--SwRxeGmPIZOWmwzX7xl3PycnvzvFoXm8e7-9X1pnjlHIZCaaerWhuUVrNKKt1ILJlU1kowVkhwxjMOTkjJUDEnlReNtro2vGyct2JOLn53-xQ_Rp-H7T6OqZsutxwMVFxJDeIbVs5dkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090826470</pqid></control><display><type>article</type><title>Hierarchical hollow, sea-urchin-like and porous Ni0.5Co0.5Se2 as advanced battery material for hybrid supercapacitors</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Song, Xinxin ; Huang, Chenghao ; Qin, Yanliang ; Li, Hongliang ; Hai Chao Chen</creator><creatorcontrib>Song, Xinxin ; Huang, Chenghao ; Qin, Yanliang ; Li, Hongliang ; Hai Chao Chen</creatorcontrib><description>Hierarchical Ni0.5Co0.5Se2 containing a hollow inner structure, with a 3D sea-urchin-like overall morphology and very porous nanowires, was first synthesized by a low-temperature selenization method. Benefiting from such a hierarchical structure, the Ni0.5Co0.5Se2 demonstrates a much improved specific area to provide more electroactive sites and a self-supporting 3D structure to make good contact with the electrolyte. More significantly, it is found that the bimetal Ni0.5Co0.5Se2 combines electrochemical advantages from both Ni and Co, showing high electroactivity and low charge transfer resistance. As a result, the hierarchical Ni0.5Co0.5Se2 exhibits a higher specific capacity of 524 C g−1 at 1 A g−1, a superior rate performance of 56% capacity retention when the specific current increases by 50 times and excellent cycling stability of 91% capacity retention after 3500 cycles. In addition, an Ni0.5Co0.5Se2//reduced graphene oxide (RGO) HSC achieves a high specific energy of 37.5 W h kg−1, an ultrahigh specific power of 22.2 kW kg−1 and an outstanding cycling stability up to 10 000 cycles, further confirming the superior performance of hierarchical Ni0.5Co0.5Se2.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c8ta05037f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Bimetals ; Charge transfer ; Cycles ; Electroactivity ; Electrochemistry ; Low temperature ; Morphology ; Nanotechnology ; Nanowires ; Retention ; Specific capacity ; Stability ; Structural hierarchy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (33), p.16205-16212</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27901,27902,27903</link.rule.ids></links><search><creatorcontrib>Song, Xinxin</creatorcontrib><creatorcontrib>Huang, Chenghao</creatorcontrib><creatorcontrib>Qin, Yanliang</creatorcontrib><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Hai Chao Chen</creatorcontrib><title>Hierarchical hollow, sea-urchin-like and porous Ni0.5Co0.5Se2 as advanced battery material for hybrid supercapacitors</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Hierarchical Ni0.5Co0.5Se2 containing a hollow inner structure, with a 3D sea-urchin-like overall morphology and very porous nanowires, was first synthesized by a low-temperature selenization method. Benefiting from such a hierarchical structure, the Ni0.5Co0.5Se2 demonstrates a much improved specific area to provide more electroactive sites and a self-supporting 3D structure to make good contact with the electrolyte. More significantly, it is found that the bimetal Ni0.5Co0.5Se2 combines electrochemical advantages from both Ni and Co, showing high electroactivity and low charge transfer resistance. As a result, the hierarchical Ni0.5Co0.5Se2 exhibits a higher specific capacity of 524 C g−1 at 1 A g−1, a superior rate performance of 56% capacity retention when the specific current increases by 50 times and excellent cycling stability of 91% capacity retention after 3500 cycles. In addition, an Ni0.5Co0.5Se2//reduced graphene oxide (RGO) HSC achieves a high specific energy of 37.5 W h kg−1, an ultrahigh specific power of 22.2 kW kg−1 and an outstanding cycling stability up to 10 000 cycles, further confirming the superior performance of hierarchical Ni0.5Co0.5Se2.</description><subject>Batteries</subject><subject>Bimetals</subject><subject>Charge transfer</subject><subject>Cycles</subject><subject>Electroactivity</subject><subject>Electrochemistry</subject><subject>Low temperature</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Retention</subject><subject>Specific capacity</subject><subject>Stability</subject><subject>Structural hierarchy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9jT1PwzAYhC0EElXpwi-wxErK64_Y8YgqoEgVDMBcvXYc6hLiYCeg_nuCQNxw9-iGO0LOGSwZCHPlqgGhBKGbIzLjExVaGnX8z1V1ShY572FSBaCMmZFxHXzC5HbBYUt3sW3j1yXNHovxp-yKNrx5il1N-5jimOlDgGW5ipM9eU4xU6w_sXO-phaHwacDfccpwrTWxER3B5tCTfPY--SwRxeGmPIZOWmwzX7xl3PycnvzvFoXm8e7-9X1pnjlHIZCaaerWhuUVrNKKt1ILJlU1kowVkhwxjMOTkjJUDEnlReNtro2vGyct2JOLn53-xQ_Rp-H7T6OqZsutxwMVFxJDeIbVs5dkw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Song, Xinxin</creator><creator>Huang, Chenghao</creator><creator>Qin, Yanliang</creator><creator>Li, Hongliang</creator><creator>Hai Chao Chen</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2018</creationdate><title>Hierarchical hollow, sea-urchin-like and porous Ni0.5Co0.5Se2 as advanced battery material for hybrid supercapacitors</title><author>Song, Xinxin ; Huang, Chenghao ; Qin, Yanliang ; Li, Hongliang ; Hai Chao Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g220t-67c78d79a4b718467f4a5146bb409b340c9e120c3441a61c46e3f7b7d925fceb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>Bimetals</topic><topic>Charge transfer</topic><topic>Cycles</topic><topic>Electroactivity</topic><topic>Electrochemistry</topic><topic>Low temperature</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Retention</topic><topic>Specific capacity</topic><topic>Stability</topic><topic>Structural hierarchy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Xinxin</creatorcontrib><creatorcontrib>Huang, Chenghao</creatorcontrib><creatorcontrib>Qin, Yanliang</creatorcontrib><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Hai Chao Chen</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Xinxin</au><au>Huang, Chenghao</au><au>Qin, Yanliang</au><au>Li, Hongliang</au><au>Hai Chao Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical hollow, sea-urchin-like and porous Ni0.5Co0.5Se2 as advanced battery material for hybrid supercapacitors</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>33</issue><spage>16205</spage><epage>16212</epage><pages>16205-16212</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Hierarchical Ni0.5Co0.5Se2 containing a hollow inner structure, with a 3D sea-urchin-like overall morphology and very porous nanowires, was first synthesized by a low-temperature selenization method. Benefiting from such a hierarchical structure, the Ni0.5Co0.5Se2 demonstrates a much improved specific area to provide more electroactive sites and a self-supporting 3D structure to make good contact with the electrolyte. More significantly, it is found that the bimetal Ni0.5Co0.5Se2 combines electrochemical advantages from both Ni and Co, showing high electroactivity and low charge transfer resistance. As a result, the hierarchical Ni0.5Co0.5Se2 exhibits a higher specific capacity of 524 C g−1 at 1 A g−1, a superior rate performance of 56% capacity retention when the specific current increases by 50 times and excellent cycling stability of 91% capacity retention after 3500 cycles. In addition, an Ni0.5Co0.5Se2//reduced graphene oxide (RGO) HSC achieves a high specific energy of 37.5 W h kg−1, an ultrahigh specific power of 22.2 kW kg−1 and an outstanding cycling stability up to 10 000 cycles, further confirming the superior performance of hierarchical Ni0.5Co0.5Se2.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8ta05037f</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (33), p.16205-16212
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2090826470
source Royal Society Of Chemistry Journals 2008-
subjects Batteries
Bimetals
Charge transfer
Cycles
Electroactivity
Electrochemistry
Low temperature
Morphology
Nanotechnology
Nanowires
Retention
Specific capacity
Stability
Structural hierarchy
title Hierarchical hollow, sea-urchin-like and porous Ni0.5Co0.5Se2 as advanced battery material for hybrid supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20hollow,%20sea-urchin-like%20and%20porous%20Ni0.5Co0.5Se2%20as%20advanced%20battery%20material%20for%20hybrid%20supercapacitors&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Song,%20Xinxin&rft.date=2018&rft.volume=6&rft.issue=33&rft.spage=16205&rft.epage=16212&rft.pages=16205-16212&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c8ta05037f&rft_dat=%3Cproquest%3E2090826470%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090826470&rft_id=info:pmid/&rfr_iscdi=true