Surface critical behaviour at m-axial Lifshitz points: continuum models, boundary conditions and two-loop renormalization group results
The critical behaviour of semi-infinite \(d\)-dimensional systems with short-range interactions and an O(n) invariant Hamiltonian is investigated at an \(m\)-axial Lifshitz point with an isotropic wave-vector instability in an \(m\)-dimensional subspace of \(\mathbb{R}^d\) parallel to the surface. C...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2003-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Diehl, H W Rutkevich, S Gerwinski, A |
description | The critical behaviour of semi-infinite \(d\)-dimensional systems with short-range interactions and an O(n) invariant Hamiltonian is investigated at an \(m\)-axial Lifshitz point with an isotropic wave-vector instability in an \(m\)-dimensional subspace of \(\mathbb{R}^d\) parallel to the surface. Continuum \(|\bphi|^4\) models representing the associated universality classes of surface critical behaviour are constructed. In the boundary parts of their Hamiltonians quadratic derivative terms (involving a dimensionless coupling constant \(\lambda\)) must be included in addition to the familiar ones \(\propto\phi^2\). Beyond one-loop order the infrared-stable fixed points describing the ordinary, special and extraordinary transitions in \(d=4+\frac{m}{2}-\epsilon\) dimensions (with \(\epsilon>0\)) are located at \(\lambda=\lambda^*=\Or(\epsilon)\). At second order in \(\epsilon\), the surface critical exponents of both the ordinary and the special transitions start to deviate from their \(m=0\) analogues. Results to order \(\epsilon^2\) are presented for the surface critical exponent \(\beta_1^{\rm ord}\) of the ordinary transition. The scaling dimension of the surface energy density is shown to be given exactly by \(d+m (\theta-1)\), where \(\theta=\nu_{l4}/\nu_{l2}\) is the bulk anisotropy exponent. |
doi_str_mv | 10.48550/arxiv.0303148 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2090739278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090739278</sourcerecordid><originalsourceid>FETCH-proquest_journals_20907392783</originalsourceid><addsrcrecordid>eNqNjsFOwzAQRK1KSFTQa88rcSXFsROSckUgDtzovdomDnXleFOvXUp_gN8mkfgATiO9NxqNEMtcroq6LOUDhrM9raSWOi_qmZgrrfOsLpS6Fgvmg5RSPVaqLPVc_Hyk0GFjoAk22gYd7MweT5ZSAIzQZ3i2I3y3He9tvMBA1kd-goZ8tD6lHnpqjeN72FHyLYbvSbXjFnkG9C3EL8oc0QDBeAo9OnvBycJnoDRRTi7yrbjq0LFZ_OWNuHt92Ty_ZUOgYzIct4fxkh_VVsm1rPRaVbX-X-sXTVBamw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090739278</pqid></control><display><type>article</type><title>Surface critical behaviour at m-axial Lifshitz points: continuum models, boundary conditions and two-loop renormalization group results</title><source>Free E- Journals</source><creator>Diehl, H W ; Rutkevich, S ; Gerwinski, A</creator><creatorcontrib>Diehl, H W ; Rutkevich, S ; Gerwinski, A</creatorcontrib><description>The critical behaviour of semi-infinite \(d\)-dimensional systems with short-range interactions and an O(n) invariant Hamiltonian is investigated at an \(m\)-axial Lifshitz point with an isotropic wave-vector instability in an \(m\)-dimensional subspace of \(\mathbb{R}^d\) parallel to the surface. Continuum \(|\bphi|^4\) models representing the associated universality classes of surface critical behaviour are constructed. In the boundary parts of their Hamiltonians quadratic derivative terms (involving a dimensionless coupling constant \(\lambda\)) must be included in addition to the familiar ones \(\propto\phi^2\). Beyond one-loop order the infrared-stable fixed points describing the ordinary, special and extraordinary transitions in \(d=4+\frac{m}{2}-\epsilon\) dimensions (with \(\epsilon>0\)) are located at \(\lambda=\lambda^*=\Or(\epsilon)\). At second order in \(\epsilon\), the surface critical exponents of both the ordinary and the special transitions start to deviate from their \(m=0\) analogues. Results to order \(\epsilon^2\) are presented for the surface critical exponent \(\beta_1^{\rm ord}\) of the ordinary transition. The scaling dimension of the surface energy density is shown to be given exactly by \(d+m (\theta-1)\), where \(\theta=\nu_{l4}/\nu_{l2}\) is the bulk anisotropy exponent.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0303148</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anisotropy ; Boundary conditions ; Continuum modeling ; Flux density ; Stability ; Surface energy</subject><ispartof>arXiv.org, 2003-04</ispartof><rights>2003. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Diehl, H W</creatorcontrib><creatorcontrib>Rutkevich, S</creatorcontrib><creatorcontrib>Gerwinski, A</creatorcontrib><title>Surface critical behaviour at m-axial Lifshitz points: continuum models, boundary conditions and two-loop renormalization group results</title><title>arXiv.org</title><description>The critical behaviour of semi-infinite \(d\)-dimensional systems with short-range interactions and an O(n) invariant Hamiltonian is investigated at an \(m\)-axial Lifshitz point with an isotropic wave-vector instability in an \(m\)-dimensional subspace of \(\mathbb{R}^d\) parallel to the surface. Continuum \(|\bphi|^4\) models representing the associated universality classes of surface critical behaviour are constructed. In the boundary parts of their Hamiltonians quadratic derivative terms (involving a dimensionless coupling constant \(\lambda\)) must be included in addition to the familiar ones \(\propto\phi^2\). Beyond one-loop order the infrared-stable fixed points describing the ordinary, special and extraordinary transitions in \(d=4+\frac{m}{2}-\epsilon\) dimensions (with \(\epsilon>0\)) are located at \(\lambda=\lambda^*=\Or(\epsilon)\). At second order in \(\epsilon\), the surface critical exponents of both the ordinary and the special transitions start to deviate from their \(m=0\) analogues. Results to order \(\epsilon^2\) are presented for the surface critical exponent \(\beta_1^{\rm ord}\) of the ordinary transition. The scaling dimension of the surface energy density is shown to be given exactly by \(d+m (\theta-1)\), where \(\theta=\nu_{l4}/\nu_{l2}\) is the bulk anisotropy exponent.</description><subject>Anisotropy</subject><subject>Boundary conditions</subject><subject>Continuum modeling</subject><subject>Flux density</subject><subject>Stability</subject><subject>Surface energy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjsFOwzAQRK1KSFTQa88rcSXFsROSckUgDtzovdomDnXleFOvXUp_gN8mkfgATiO9NxqNEMtcroq6LOUDhrM9raSWOi_qmZgrrfOsLpS6Fgvmg5RSPVaqLPVc_Hyk0GFjoAk22gYd7MweT5ZSAIzQZ3i2I3y3He9tvMBA1kd-goZ8tD6lHnpqjeN72FHyLYbvSbXjFnkG9C3EL8oc0QDBeAo9OnvBycJnoDRRTi7yrbjq0LFZ_OWNuHt92Ty_ZUOgYzIct4fxkh_VVsm1rPRaVbX-X-sXTVBamw</recordid><startdate>20030408</startdate><enddate>20030408</enddate><creator>Diehl, H W</creator><creator>Rutkevich, S</creator><creator>Gerwinski, A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20030408</creationdate><title>Surface critical behaviour at m-axial Lifshitz points: continuum models, boundary conditions and two-loop renormalization group results</title><author>Diehl, H W ; Rutkevich, S ; Gerwinski, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20907392783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Anisotropy</topic><topic>Boundary conditions</topic><topic>Continuum modeling</topic><topic>Flux density</topic><topic>Stability</topic><topic>Surface energy</topic><toplevel>online_resources</toplevel><creatorcontrib>Diehl, H W</creatorcontrib><creatorcontrib>Rutkevich, S</creatorcontrib><creatorcontrib>Gerwinski, A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diehl, H W</au><au>Rutkevich, S</au><au>Gerwinski, A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Surface critical behaviour at m-axial Lifshitz points: continuum models, boundary conditions and two-loop renormalization group results</atitle><jtitle>arXiv.org</jtitle><date>2003-04-08</date><risdate>2003</risdate><eissn>2331-8422</eissn><abstract>The critical behaviour of semi-infinite \(d\)-dimensional systems with short-range interactions and an O(n) invariant Hamiltonian is investigated at an \(m\)-axial Lifshitz point with an isotropic wave-vector instability in an \(m\)-dimensional subspace of \(\mathbb{R}^d\) parallel to the surface. Continuum \(|\bphi|^4\) models representing the associated universality classes of surface critical behaviour are constructed. In the boundary parts of their Hamiltonians quadratic derivative terms (involving a dimensionless coupling constant \(\lambda\)) must be included in addition to the familiar ones \(\propto\phi^2\). Beyond one-loop order the infrared-stable fixed points describing the ordinary, special and extraordinary transitions in \(d=4+\frac{m}{2}-\epsilon\) dimensions (with \(\epsilon>0\)) are located at \(\lambda=\lambda^*=\Or(\epsilon)\). At second order in \(\epsilon\), the surface critical exponents of both the ordinary and the special transitions start to deviate from their \(m=0\) analogues. Results to order \(\epsilon^2\) are presented for the surface critical exponent \(\beta_1^{\rm ord}\) of the ordinary transition. The scaling dimension of the surface energy density is shown to be given exactly by \(d+m (\theta-1)\), where \(\theta=\nu_{l4}/\nu_{l2}\) is the bulk anisotropy exponent.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0303148</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2003-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2090739278 |
source | Free E- Journals |
subjects | Anisotropy Boundary conditions Continuum modeling Flux density Stability Surface energy |
title | Surface critical behaviour at m-axial Lifshitz points: continuum models, boundary conditions and two-loop renormalization group results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Surface%20critical%20behaviour%20at%20m-axial%20Lifshitz%20points:%20continuum%20models,%20boundary%20conditions%20and%20two-loop%20renormalization%20group%20results&rft.jtitle=arXiv.org&rft.au=Diehl,%20H%20W&rft.date=2003-04-08&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0303148&rft_dat=%3Cproquest%3E2090739278%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090739278&rft_id=info:pmid/&rfr_iscdi=true |