Extraction and Classification of Human Body Parameters for Gait Analysis
Human gait analysis is considered a new biometric tool for the ability to obtain metrics from the body at a distance. Biometric identifiers have properties that can technologically measure and analyze the characteristics of the human body and can be used as a form of identification and access contro...
Gespeichert in:
Veröffentlicht in: | Journal of control, automation & electrical systems automation & electrical systems, 2018-10, Vol.29 (5), p.586-604 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 604 |
---|---|
container_issue | 5 |
container_start_page | 586 |
container_title | Journal of control, automation & electrical systems |
container_volume | 29 |
creator | Souza, Alana de M. e Stemmer, Marcelo R. |
description | Human gait analysis is considered a new biometric tool for the ability to obtain metrics from the body at a distance. Biometric identifiers have properties that can technologically measure and analyze the characteristics of the human body and can be used as a form of identification and access control for security applications. Recognition through proper interpretation of gait parameters has become a relevant pattern classification problem. This work aims to develop an image processing system, with the use of the Microsoft Kinect sensor, which is capable to extract movement patterns for gait analysis and to present a comparative study of different pattern recognition methods for human identification. The image processing system, developed in C#, allowed the acquisition of three-dimensional data from several volunteers and made it possible to identify the human skeleton and automatically extract the kinetic and kinematic parameters of the body. For data analysis, different classification methods were compared. Among them, the algorithms that presented better performance were probabilistic neural networks, deep neural networks and k-nearest neighbors, with nearly 99% correct recognition rate. The obtained results demonstrate the efficiency of gait analysis as a biometric method. They also show the viability of gait parameter extraction using the Kinect sensor and the good performance of pattern recognition methods applied to the acquired gait kinetic and kinematic parameters. |
doi_str_mv | 10.1007/s40313-018-0401-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2090671327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090671327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bd72d44fc3f36349f3987925ca5d59bd84cd0481f494ea80844a2856e1b1edfa3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWLQP4C3geXUmye4mx1pqKxT0oOcw3SSypd2tyRZsn96tK3ryNMPw_T_Dx9gNwh0ClPdJgUSZAeoMFGB2PGMjgSbPpDbm_HfXcMnGKa0BehIF5vmILWafXaSqq9uGU-P4dEMp1aGu6PvUBr7Yb6nhD6078BeKtPWdj4mHNvI51R2fNLQ5pDpds4tAm-THP_OKvT3OXqeLbPk8f5pOllklseiylSuFUypUMshCKhOk0aUReUW5y83KaVU5UBqDMsqTBq0UCZ0XHlfoXSB5xW6H3l1sP_Y-dXbd7mP_RLICDBQlSlH2FA5UFduUog92F-stxYNFsCdndnBmexP25Mwe-4wYMqlnm3cf_5r_D30BrGluTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090671327</pqid></control><display><type>article</type><title>Extraction and Classification of Human Body Parameters for Gait Analysis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Souza, Alana de M. e ; Stemmer, Marcelo R.</creator><creatorcontrib>Souza, Alana de M. e ; Stemmer, Marcelo R.</creatorcontrib><description>Human gait analysis is considered a new biometric tool for the ability to obtain metrics from the body at a distance. Biometric identifiers have properties that can technologically measure and analyze the characteristics of the human body and can be used as a form of identification and access control for security applications. Recognition through proper interpretation of gait parameters has become a relevant pattern classification problem. This work aims to develop an image processing system, with the use of the Microsoft Kinect sensor, which is capable to extract movement patterns for gait analysis and to present a comparative study of different pattern recognition methods for human identification. The image processing system, developed in C#, allowed the acquisition of three-dimensional data from several volunteers and made it possible to identify the human skeleton and automatically extract the kinetic and kinematic parameters of the body. For data analysis, different classification methods were compared. Among them, the algorithms that presented better performance were probabilistic neural networks, deep neural networks and k-nearest neighbors, with nearly 99% correct recognition rate. The obtained results demonstrate the efficiency of gait analysis as a biometric method. They also show the viability of gait parameter extraction using the Kinect sensor and the good performance of pattern recognition methods applied to the acquired gait kinetic and kinematic parameters.</description><identifier>ISSN: 2195-3880</identifier><identifier>EISSN: 2195-3899</identifier><identifier>DOI: 10.1007/s40313-018-0401-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Access control ; Artificial neural networks ; Biometrics ; Comparative studies ; Control ; Control and Systems Theory ; Data analysis ; Electrical Engineering ; Engineering ; Gait ; Gait recognition ; Human body ; Identification methods ; Image acquisition ; Image classification ; Image processing ; Kinematics ; Mechatronics ; Neural networks ; Object recognition ; Parameters ; Pattern recognition ; Robotics ; Robotics and Automation ; Viability</subject><ispartof>Journal of control, automation & electrical systems, 2018-10, Vol.29 (5), p.586-604</ispartof><rights>Brazilian Society for Automatics--SBA 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-bd72d44fc3f36349f3987925ca5d59bd84cd0481f494ea80844a2856e1b1edfa3</citedby><cites>FETCH-LOGICAL-c316t-bd72d44fc3f36349f3987925ca5d59bd84cd0481f494ea80844a2856e1b1edfa3</cites><orcidid>0000-0002-2955-3691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40313-018-0401-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40313-018-0401-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Souza, Alana de M. e</creatorcontrib><creatorcontrib>Stemmer, Marcelo R.</creatorcontrib><title>Extraction and Classification of Human Body Parameters for Gait Analysis</title><title>Journal of control, automation & electrical systems</title><addtitle>J Control Autom Electr Syst</addtitle><description>Human gait analysis is considered a new biometric tool for the ability to obtain metrics from the body at a distance. Biometric identifiers have properties that can technologically measure and analyze the characteristics of the human body and can be used as a form of identification and access control for security applications. Recognition through proper interpretation of gait parameters has become a relevant pattern classification problem. This work aims to develop an image processing system, with the use of the Microsoft Kinect sensor, which is capable to extract movement patterns for gait analysis and to present a comparative study of different pattern recognition methods for human identification. The image processing system, developed in C#, allowed the acquisition of three-dimensional data from several volunteers and made it possible to identify the human skeleton and automatically extract the kinetic and kinematic parameters of the body. For data analysis, different classification methods were compared. Among them, the algorithms that presented better performance were probabilistic neural networks, deep neural networks and k-nearest neighbors, with nearly 99% correct recognition rate. The obtained results demonstrate the efficiency of gait analysis as a biometric method. They also show the viability of gait parameter extraction using the Kinect sensor and the good performance of pattern recognition methods applied to the acquired gait kinetic and kinematic parameters.</description><subject>Access control</subject><subject>Artificial neural networks</subject><subject>Biometrics</subject><subject>Comparative studies</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Data analysis</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Gait</subject><subject>Gait recognition</subject><subject>Human body</subject><subject>Identification methods</subject><subject>Image acquisition</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Kinematics</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Parameters</subject><subject>Pattern recognition</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Viability</subject><issn>2195-3880</issn><issn>2195-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWLQP4C3geXUmye4mx1pqKxT0oOcw3SSypd2tyRZsn96tK3ryNMPw_T_Dx9gNwh0ClPdJgUSZAeoMFGB2PGMjgSbPpDbm_HfXcMnGKa0BehIF5vmILWafXaSqq9uGU-P4dEMp1aGu6PvUBr7Yb6nhD6078BeKtPWdj4mHNvI51R2fNLQ5pDpds4tAm-THP_OKvT3OXqeLbPk8f5pOllklseiylSuFUypUMshCKhOk0aUReUW5y83KaVU5UBqDMsqTBq0UCZ0XHlfoXSB5xW6H3l1sP_Y-dXbd7mP_RLICDBQlSlH2FA5UFduUog92F-stxYNFsCdndnBmexP25Mwe-4wYMqlnm3cf_5r_D30BrGluTw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Souza, Alana de M. e</creator><creator>Stemmer, Marcelo R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2955-3691</orcidid></search><sort><creationdate>20181001</creationdate><title>Extraction and Classification of Human Body Parameters for Gait Analysis</title><author>Souza, Alana de M. e ; Stemmer, Marcelo R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bd72d44fc3f36349f3987925ca5d59bd84cd0481f494ea80844a2856e1b1edfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Access control</topic><topic>Artificial neural networks</topic><topic>Biometrics</topic><topic>Comparative studies</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Data analysis</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Gait</topic><topic>Gait recognition</topic><topic>Human body</topic><topic>Identification methods</topic><topic>Image acquisition</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Kinematics</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Parameters</topic><topic>Pattern recognition</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Viability</topic><toplevel>online_resources</toplevel><creatorcontrib>Souza, Alana de M. e</creatorcontrib><creatorcontrib>Stemmer, Marcelo R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of control, automation & electrical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Souza, Alana de M. e</au><au>Stemmer, Marcelo R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraction and Classification of Human Body Parameters for Gait Analysis</atitle><jtitle>Journal of control, automation & electrical systems</jtitle><stitle>J Control Autom Electr Syst</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>29</volume><issue>5</issue><spage>586</spage><epage>604</epage><pages>586-604</pages><issn>2195-3880</issn><eissn>2195-3899</eissn><abstract>Human gait analysis is considered a new biometric tool for the ability to obtain metrics from the body at a distance. Biometric identifiers have properties that can technologically measure and analyze the characteristics of the human body and can be used as a form of identification and access control for security applications. Recognition through proper interpretation of gait parameters has become a relevant pattern classification problem. This work aims to develop an image processing system, with the use of the Microsoft Kinect sensor, which is capable to extract movement patterns for gait analysis and to present a comparative study of different pattern recognition methods for human identification. The image processing system, developed in C#, allowed the acquisition of three-dimensional data from several volunteers and made it possible to identify the human skeleton and automatically extract the kinetic and kinematic parameters of the body. For data analysis, different classification methods were compared. Among them, the algorithms that presented better performance were probabilistic neural networks, deep neural networks and k-nearest neighbors, with nearly 99% correct recognition rate. The obtained results demonstrate the efficiency of gait analysis as a biometric method. They also show the viability of gait parameter extraction using the Kinect sensor and the good performance of pattern recognition methods applied to the acquired gait kinetic and kinematic parameters.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40313-018-0401-z</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2955-3691</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-3880 |
ispartof | Journal of control, automation & electrical systems, 2018-10, Vol.29 (5), p.586-604 |
issn | 2195-3880 2195-3899 |
language | eng |
recordid | cdi_proquest_journals_2090671327 |
source | SpringerLink Journals - AutoHoldings |
subjects | Access control Artificial neural networks Biometrics Comparative studies Control Control and Systems Theory Data analysis Electrical Engineering Engineering Gait Gait recognition Human body Identification methods Image acquisition Image classification Image processing Kinematics Mechatronics Neural networks Object recognition Parameters Pattern recognition Robotics Robotics and Automation Viability |
title | Extraction and Classification of Human Body Parameters for Gait Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A36%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraction%20and%20Classification%20of%20Human%20Body%20Parameters%20for%20Gait%20Analysis&rft.jtitle=Journal%20of%20control,%20automation%20&%20electrical%20systems&rft.au=Souza,%20Alana%20de%20M.%20e&rft.date=2018-10-01&rft.volume=29&rft.issue=5&rft.spage=586&rft.epage=604&rft.pages=586-604&rft.issn=2195-3880&rft.eissn=2195-3899&rft_id=info:doi/10.1007/s40313-018-0401-z&rft_dat=%3Cproquest_cross%3E2090671327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090671327&rft_id=info:pmid/&rfr_iscdi=true |