Extraction and Classification of Human Body Parameters for Gait Analysis

Human gait analysis is considered a new biometric tool for the ability to obtain metrics from the body at a distance. Biometric identifiers have properties that can technologically measure and analyze the characteristics of the human body and can be used as a form of identification and access contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of control, automation & electrical systems automation & electrical systems, 2018-10, Vol.29 (5), p.586-604
Hauptverfasser: Souza, Alana de M. e, Stemmer, Marcelo R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 604
container_issue 5
container_start_page 586
container_title Journal of control, automation & electrical systems
container_volume 29
creator Souza, Alana de M. e
Stemmer, Marcelo R.
description Human gait analysis is considered a new biometric tool for the ability to obtain metrics from the body at a distance. Biometric identifiers have properties that can technologically measure and analyze the characteristics of the human body and can be used as a form of identification and access control for security applications. Recognition through proper interpretation of gait parameters has become a relevant pattern classification problem. This work aims to develop an image processing system, with the use of the Microsoft Kinect sensor, which is capable to extract movement patterns for gait analysis and to present a comparative study of different pattern recognition methods for human identification. The image processing system, developed in C#, allowed the acquisition of three-dimensional data from several volunteers and made it possible to identify the human skeleton and automatically extract the kinetic and kinematic parameters of the body. For data analysis, different classification methods were compared. Among them, the algorithms that presented better performance were probabilistic neural networks, deep neural networks and k-nearest neighbors, with nearly 99% correct recognition rate. The obtained results demonstrate the efficiency of gait analysis as a biometric method. They also show the viability of gait parameter extraction using the Kinect sensor and the good performance of pattern recognition methods applied to the acquired gait kinetic and kinematic parameters.
doi_str_mv 10.1007/s40313-018-0401-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2090671327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090671327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bd72d44fc3f36349f3987925ca5d59bd84cd0481f494ea80844a2856e1b1edfa3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWLQP4C3geXUmye4mx1pqKxT0oOcw3SSypd2tyRZsn96tK3ryNMPw_T_Dx9gNwh0ClPdJgUSZAeoMFGB2PGMjgSbPpDbm_HfXcMnGKa0BehIF5vmILWafXaSqq9uGU-P4dEMp1aGu6PvUBr7Yb6nhD6078BeKtPWdj4mHNvI51R2fNLQ5pDpds4tAm-THP_OKvT3OXqeLbPk8f5pOllklseiylSuFUypUMshCKhOk0aUReUW5y83KaVU5UBqDMsqTBq0UCZ0XHlfoXSB5xW6H3l1sP_Y-dXbd7mP_RLICDBQlSlH2FA5UFduUog92F-stxYNFsCdndnBmexP25Mwe-4wYMqlnm3cf_5r_D30BrGluTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090671327</pqid></control><display><type>article</type><title>Extraction and Classification of Human Body Parameters for Gait Analysis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Souza, Alana de M. e ; Stemmer, Marcelo R.</creator><creatorcontrib>Souza, Alana de M. e ; Stemmer, Marcelo R.</creatorcontrib><description>Human gait analysis is considered a new biometric tool for the ability to obtain metrics from the body at a distance. Biometric identifiers have properties that can technologically measure and analyze the characteristics of the human body and can be used as a form of identification and access control for security applications. Recognition through proper interpretation of gait parameters has become a relevant pattern classification problem. This work aims to develop an image processing system, with the use of the Microsoft Kinect sensor, which is capable to extract movement patterns for gait analysis and to present a comparative study of different pattern recognition methods for human identification. The image processing system, developed in C#, allowed the acquisition of three-dimensional data from several volunteers and made it possible to identify the human skeleton and automatically extract the kinetic and kinematic parameters of the body. For data analysis, different classification methods were compared. Among them, the algorithms that presented better performance were probabilistic neural networks, deep neural networks and k-nearest neighbors, with nearly 99% correct recognition rate. The obtained results demonstrate the efficiency of gait analysis as a biometric method. They also show the viability of gait parameter extraction using the Kinect sensor and the good performance of pattern recognition methods applied to the acquired gait kinetic and kinematic parameters.</description><identifier>ISSN: 2195-3880</identifier><identifier>EISSN: 2195-3899</identifier><identifier>DOI: 10.1007/s40313-018-0401-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Access control ; Artificial neural networks ; Biometrics ; Comparative studies ; Control ; Control and Systems Theory ; Data analysis ; Electrical Engineering ; Engineering ; Gait ; Gait recognition ; Human body ; Identification methods ; Image acquisition ; Image classification ; Image processing ; Kinematics ; Mechatronics ; Neural networks ; Object recognition ; Parameters ; Pattern recognition ; Robotics ; Robotics and Automation ; Viability</subject><ispartof>Journal of control, automation &amp; electrical systems, 2018-10, Vol.29 (5), p.586-604</ispartof><rights>Brazilian Society for Automatics--SBA 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-bd72d44fc3f36349f3987925ca5d59bd84cd0481f494ea80844a2856e1b1edfa3</citedby><cites>FETCH-LOGICAL-c316t-bd72d44fc3f36349f3987925ca5d59bd84cd0481f494ea80844a2856e1b1edfa3</cites><orcidid>0000-0002-2955-3691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40313-018-0401-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40313-018-0401-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Souza, Alana de M. e</creatorcontrib><creatorcontrib>Stemmer, Marcelo R.</creatorcontrib><title>Extraction and Classification of Human Body Parameters for Gait Analysis</title><title>Journal of control, automation &amp; electrical systems</title><addtitle>J Control Autom Electr Syst</addtitle><description>Human gait analysis is considered a new biometric tool for the ability to obtain metrics from the body at a distance. Biometric identifiers have properties that can technologically measure and analyze the characteristics of the human body and can be used as a form of identification and access control for security applications. Recognition through proper interpretation of gait parameters has become a relevant pattern classification problem. This work aims to develop an image processing system, with the use of the Microsoft Kinect sensor, which is capable to extract movement patterns for gait analysis and to present a comparative study of different pattern recognition methods for human identification. The image processing system, developed in C#, allowed the acquisition of three-dimensional data from several volunteers and made it possible to identify the human skeleton and automatically extract the kinetic and kinematic parameters of the body. For data analysis, different classification methods were compared. Among them, the algorithms that presented better performance were probabilistic neural networks, deep neural networks and k-nearest neighbors, with nearly 99% correct recognition rate. The obtained results demonstrate the efficiency of gait analysis as a biometric method. They also show the viability of gait parameter extraction using the Kinect sensor and the good performance of pattern recognition methods applied to the acquired gait kinetic and kinematic parameters.</description><subject>Access control</subject><subject>Artificial neural networks</subject><subject>Biometrics</subject><subject>Comparative studies</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Data analysis</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Gait</subject><subject>Gait recognition</subject><subject>Human body</subject><subject>Identification methods</subject><subject>Image acquisition</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Kinematics</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Parameters</subject><subject>Pattern recognition</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Viability</subject><issn>2195-3880</issn><issn>2195-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWLQP4C3geXUmye4mx1pqKxT0oOcw3SSypd2tyRZsn96tK3ryNMPw_T_Dx9gNwh0ClPdJgUSZAeoMFGB2PGMjgSbPpDbm_HfXcMnGKa0BehIF5vmILWafXaSqq9uGU-P4dEMp1aGu6PvUBr7Yb6nhD6078BeKtPWdj4mHNvI51R2fNLQ5pDpds4tAm-THP_OKvT3OXqeLbPk8f5pOllklseiylSuFUypUMshCKhOk0aUReUW5y83KaVU5UBqDMsqTBq0UCZ0XHlfoXSB5xW6H3l1sP_Y-dXbd7mP_RLICDBQlSlH2FA5UFduUog92F-stxYNFsCdndnBmexP25Mwe-4wYMqlnm3cf_5r_D30BrGluTw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Souza, Alana de M. e</creator><creator>Stemmer, Marcelo R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2955-3691</orcidid></search><sort><creationdate>20181001</creationdate><title>Extraction and Classification of Human Body Parameters for Gait Analysis</title><author>Souza, Alana de M. e ; Stemmer, Marcelo R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bd72d44fc3f36349f3987925ca5d59bd84cd0481f494ea80844a2856e1b1edfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Access control</topic><topic>Artificial neural networks</topic><topic>Biometrics</topic><topic>Comparative studies</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Data analysis</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Gait</topic><topic>Gait recognition</topic><topic>Human body</topic><topic>Identification methods</topic><topic>Image acquisition</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Kinematics</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Parameters</topic><topic>Pattern recognition</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Viability</topic><toplevel>online_resources</toplevel><creatorcontrib>Souza, Alana de M. e</creatorcontrib><creatorcontrib>Stemmer, Marcelo R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of control, automation &amp; electrical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Souza, Alana de M. e</au><au>Stemmer, Marcelo R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraction and Classification of Human Body Parameters for Gait Analysis</atitle><jtitle>Journal of control, automation &amp; electrical systems</jtitle><stitle>J Control Autom Electr Syst</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>29</volume><issue>5</issue><spage>586</spage><epage>604</epage><pages>586-604</pages><issn>2195-3880</issn><eissn>2195-3899</eissn><abstract>Human gait analysis is considered a new biometric tool for the ability to obtain metrics from the body at a distance. Biometric identifiers have properties that can technologically measure and analyze the characteristics of the human body and can be used as a form of identification and access control for security applications. Recognition through proper interpretation of gait parameters has become a relevant pattern classification problem. This work aims to develop an image processing system, with the use of the Microsoft Kinect sensor, which is capable to extract movement patterns for gait analysis and to present a comparative study of different pattern recognition methods for human identification. The image processing system, developed in C#, allowed the acquisition of three-dimensional data from several volunteers and made it possible to identify the human skeleton and automatically extract the kinetic and kinematic parameters of the body. For data analysis, different classification methods were compared. Among them, the algorithms that presented better performance were probabilistic neural networks, deep neural networks and k-nearest neighbors, with nearly 99% correct recognition rate. The obtained results demonstrate the efficiency of gait analysis as a biometric method. They also show the viability of gait parameter extraction using the Kinect sensor and the good performance of pattern recognition methods applied to the acquired gait kinetic and kinematic parameters.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40313-018-0401-z</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2955-3691</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-3880
ispartof Journal of control, automation & electrical systems, 2018-10, Vol.29 (5), p.586-604
issn 2195-3880
2195-3899
language eng
recordid cdi_proquest_journals_2090671327
source SpringerLink Journals - AutoHoldings
subjects Access control
Artificial neural networks
Biometrics
Comparative studies
Control
Control and Systems Theory
Data analysis
Electrical Engineering
Engineering
Gait
Gait recognition
Human body
Identification methods
Image acquisition
Image classification
Image processing
Kinematics
Mechatronics
Neural networks
Object recognition
Parameters
Pattern recognition
Robotics
Robotics and Automation
Viability
title Extraction and Classification of Human Body Parameters for Gait Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A36%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraction%20and%20Classification%20of%20Human%20Body%20Parameters%20for%20Gait%20Analysis&rft.jtitle=Journal%20of%20control,%20automation%20&%20electrical%20systems&rft.au=Souza,%20Alana%20de%20M.%20e&rft.date=2018-10-01&rft.volume=29&rft.issue=5&rft.spage=586&rft.epage=604&rft.pages=586-604&rft.issn=2195-3880&rft.eissn=2195-3899&rft_id=info:doi/10.1007/s40313-018-0401-z&rft_dat=%3Cproquest_cross%3E2090671327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090671327&rft_id=info:pmid/&rfr_iscdi=true