Comparison of experimental and first-principle results of band-gap narrowing of MgO nanostructures and their dependence on crystal structural parameters

From experimental investigations of the bandgaps of magnesium oxide (MgO) nanostructures, the results show that band-gap narrowing occurred as the physical dimension of the MgO crystallites decrease. This is in contrast to other metal oxides such as ZnO. To obtain insights on this observed phenomeno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied nanoscience 2018-10, Vol.8 (7), p.1621-1628
Hauptverfasser: Kamarulzaman, N., Mustaffa, D. T., Chayed, N. F., Badar, N., Taib, M. F. M., Ibrahim, A. B. M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1628
container_issue 7
container_start_page 1621
container_title Applied nanoscience
container_volume 8
creator Kamarulzaman, N.
Mustaffa, D. T.
Chayed, N. F.
Badar, N.
Taib, M. F. M.
Ibrahim, A. B. M. A.
description From experimental investigations of the bandgaps of magnesium oxide (MgO) nanostructures, the results show that band-gap narrowing occurred as the physical dimension of the MgO crystallites decrease. This is in contrast to other metal oxides such as ZnO. To obtain insights on this observed phenomenon, the first-principle studies using density functional theory were carried out. The strategy used here is different from the normal theoretical studies, such that information of the structural characterization obtained from experimental X-ray diffraction (XRD) data via the Rietveld method was used in the calculations. This is important, because nanostructures do not possess the same crystal parameters as the bulk and accurate real structural parameters should be used in the calculations. Based on these values, the crystal structures were simulated and the electronic band structures were calculated within the density functional theory (DFT). Results from the density of state (DOS) studies shows that the band-gap narrowing is due to the shifting of the valence and conduction bands. From our theoretical results, we can conclude that the narrowing of the bandgaps of MgO nanostructures is a consequence of the increase of their lattice parameters. The calculated results exhibit this trend and are in good agreement with the experimental results.
doi_str_mv 10.1007/s13204-018-0859-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2090662635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090662635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b034f38b655ad6b9251893e14492d4889be8509b564b6ea5d128026af8a24cf23</originalsourceid><addsrcrecordid>eNp1UctOwzAQjBBIVKUfwC0SZ4PtxK59RBUvqagXOFtOsimpEiesHUH_hM_FoTxO-OLVenZmPZMk54xeMkqXV55lnOaEMkWoEproo2TGmaZECLY8_q2pPk0W3u9oPCJfykzMko9V3w0WG9-7tK9TeB8Amw5csG1qXZXWDfpABmxc2QwtpAh-bIOfsEV8J1s7pM4i9m-N207dx-0mNlzvA45lGCP-iye8QINpBQO4ClwJadQrce8nnR9oLOMqtoMA6M-Sk9q2Hhbf9zx5vr15Wt2T9ebuYXW9JmXGZCAFzfI6U4UUwlay0FwwpTNgea55lSulC1Dx44WQeSHBiopxRbm0tbI8L2uezZOLA--A_esIPphdP6KLkoZTTaXk0aeIYgdUib33CLWJlnQW94ZRM2VgDhmYmIGZMjA6zvDDjJ_s2wL-Mf8_9AnJjIyH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090662635</pqid></control><display><type>article</type><title>Comparison of experimental and first-principle results of band-gap narrowing of MgO nanostructures and their dependence on crystal structural parameters</title><source>SpringerLink Journals</source><creator>Kamarulzaman, N. ; Mustaffa, D. T. ; Chayed, N. F. ; Badar, N. ; Taib, M. F. M. ; Ibrahim, A. B. M. A.</creator><creatorcontrib>Kamarulzaman, N. ; Mustaffa, D. T. ; Chayed, N. F. ; Badar, N. ; Taib, M. F. M. ; Ibrahim, A. B. M. A.</creatorcontrib><description>From experimental investigations of the bandgaps of magnesium oxide (MgO) nanostructures, the results show that band-gap narrowing occurred as the physical dimension of the MgO crystallites decrease. This is in contrast to other metal oxides such as ZnO. To obtain insights on this observed phenomenon, the first-principle studies using density functional theory were carried out. The strategy used here is different from the normal theoretical studies, such that information of the structural characterization obtained from experimental X-ray diffraction (XRD) data via the Rietveld method was used in the calculations. This is important, because nanostructures do not possess the same crystal parameters as the bulk and accurate real structural parameters should be used in the calculations. Based on these values, the crystal structures were simulated and the electronic band structures were calculated within the density functional theory (DFT). Results from the density of state (DOS) studies shows that the band-gap narrowing is due to the shifting of the valence and conduction bands. From our theoretical results, we can conclude that the narrowing of the bandgaps of MgO nanostructures is a consequence of the increase of their lattice parameters. The calculated results exhibit this trend and are in good agreement with the experimental results.</description><identifier>ISSN: 2190-5509</identifier><identifier>EISSN: 2190-5517</identifier><identifier>DOI: 10.1007/s13204-018-0859-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Band theory ; Chemistry and Materials Science ; Conduction bands ; Crystal structure ; Crystallites ; Density functional theory ; Density of states ; Dependence ; Diffraction ; First principles ; Lattice parameters ; Magnesium oxide ; Materials Science ; Mathematical analysis ; Membrane Biology ; Nanochemistry ; Nanostructure ; Nanotechnology ; Nanotechnology and Microengineering ; Review Article ; Rietveld method ; Structural analysis ; Superconductors (materials) ; X-ray diffraction ; Zinc oxide</subject><ispartof>Applied nanoscience, 2018-10, Vol.8 (7), p.1621-1628</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Applied Nanoscience is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b034f38b655ad6b9251893e14492d4889be8509b564b6ea5d128026af8a24cf23</citedby><cites>FETCH-LOGICAL-c316t-b034f38b655ad6b9251893e14492d4889be8509b564b6ea5d128026af8a24cf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13204-018-0859-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13204-018-0859-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kamarulzaman, N.</creatorcontrib><creatorcontrib>Mustaffa, D. T.</creatorcontrib><creatorcontrib>Chayed, N. F.</creatorcontrib><creatorcontrib>Badar, N.</creatorcontrib><creatorcontrib>Taib, M. F. M.</creatorcontrib><creatorcontrib>Ibrahim, A. B. M. A.</creatorcontrib><title>Comparison of experimental and first-principle results of band-gap narrowing of MgO nanostructures and their dependence on crystal structural parameters</title><title>Applied nanoscience</title><addtitle>Appl Nanosci</addtitle><description>From experimental investigations of the bandgaps of magnesium oxide (MgO) nanostructures, the results show that band-gap narrowing occurred as the physical dimension of the MgO crystallites decrease. This is in contrast to other metal oxides such as ZnO. To obtain insights on this observed phenomenon, the first-principle studies using density functional theory were carried out. The strategy used here is different from the normal theoretical studies, such that information of the structural characterization obtained from experimental X-ray diffraction (XRD) data via the Rietveld method was used in the calculations. This is important, because nanostructures do not possess the same crystal parameters as the bulk and accurate real structural parameters should be used in the calculations. Based on these values, the crystal structures were simulated and the electronic band structures were calculated within the density functional theory (DFT). Results from the density of state (DOS) studies shows that the band-gap narrowing is due to the shifting of the valence and conduction bands. From our theoretical results, we can conclude that the narrowing of the bandgaps of MgO nanostructures is a consequence of the increase of their lattice parameters. The calculated results exhibit this trend and are in good agreement with the experimental results.</description><subject>Band theory</subject><subject>Chemistry and Materials Science</subject><subject>Conduction bands</subject><subject>Crystal structure</subject><subject>Crystallites</subject><subject>Density functional theory</subject><subject>Density of states</subject><subject>Dependence</subject><subject>Diffraction</subject><subject>First principles</subject><subject>Lattice parameters</subject><subject>Magnesium oxide</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Membrane Biology</subject><subject>Nanochemistry</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Review Article</subject><subject>Rietveld method</subject><subject>Structural analysis</subject><subject>Superconductors (materials)</subject><subject>X-ray diffraction</subject><subject>Zinc oxide</subject><issn>2190-5509</issn><issn>2190-5517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UctOwzAQjBBIVKUfwC0SZ4PtxK59RBUvqagXOFtOsimpEiesHUH_hM_FoTxO-OLVenZmPZMk54xeMkqXV55lnOaEMkWoEproo2TGmaZECLY8_q2pPk0W3u9oPCJfykzMko9V3w0WG9-7tK9TeB8Amw5csG1qXZXWDfpABmxc2QwtpAh-bIOfsEV8J1s7pM4i9m-N207dx-0mNlzvA45lGCP-iye8QINpBQO4ClwJadQrce8nnR9oLOMqtoMA6M-Sk9q2Hhbf9zx5vr15Wt2T9ebuYXW9JmXGZCAFzfI6U4UUwlay0FwwpTNgea55lSulC1Dx44WQeSHBiopxRbm0tbI8L2uezZOLA--A_esIPphdP6KLkoZTTaXk0aeIYgdUib33CLWJlnQW94ZRM2VgDhmYmIGZMjA6zvDDjJ_s2wL-Mf8_9AnJjIyH</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Kamarulzaman, N.</creator><creator>Mustaffa, D. T.</creator><creator>Chayed, N. F.</creator><creator>Badar, N.</creator><creator>Taib, M. F. M.</creator><creator>Ibrahim, A. B. M. A.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181001</creationdate><title>Comparison of experimental and first-principle results of band-gap narrowing of MgO nanostructures and their dependence on crystal structural parameters</title><author>Kamarulzaman, N. ; Mustaffa, D. T. ; Chayed, N. F. ; Badar, N. ; Taib, M. F. M. ; Ibrahim, A. B. M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b034f38b655ad6b9251893e14492d4889be8509b564b6ea5d128026af8a24cf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Band theory</topic><topic>Chemistry and Materials Science</topic><topic>Conduction bands</topic><topic>Crystal structure</topic><topic>Crystallites</topic><topic>Density functional theory</topic><topic>Density of states</topic><topic>Dependence</topic><topic>Diffraction</topic><topic>First principles</topic><topic>Lattice parameters</topic><topic>Magnesium oxide</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Membrane Biology</topic><topic>Nanochemistry</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Review Article</topic><topic>Rietveld method</topic><topic>Structural analysis</topic><topic>Superconductors (materials)</topic><topic>X-ray diffraction</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamarulzaman, N.</creatorcontrib><creatorcontrib>Mustaffa, D. T.</creatorcontrib><creatorcontrib>Chayed, N. F.</creatorcontrib><creatorcontrib>Badar, N.</creatorcontrib><creatorcontrib>Taib, M. F. M.</creatorcontrib><creatorcontrib>Ibrahim, A. B. M. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied nanoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamarulzaman, N.</au><au>Mustaffa, D. T.</au><au>Chayed, N. F.</au><au>Badar, N.</au><au>Taib, M. F. M.</au><au>Ibrahim, A. B. M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of experimental and first-principle results of band-gap narrowing of MgO nanostructures and their dependence on crystal structural parameters</atitle><jtitle>Applied nanoscience</jtitle><stitle>Appl Nanosci</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>8</volume><issue>7</issue><spage>1621</spage><epage>1628</epage><pages>1621-1628</pages><issn>2190-5509</issn><eissn>2190-5517</eissn><abstract>From experimental investigations of the bandgaps of magnesium oxide (MgO) nanostructures, the results show that band-gap narrowing occurred as the physical dimension of the MgO crystallites decrease. This is in contrast to other metal oxides such as ZnO. To obtain insights on this observed phenomenon, the first-principle studies using density functional theory were carried out. The strategy used here is different from the normal theoretical studies, such that information of the structural characterization obtained from experimental X-ray diffraction (XRD) data via the Rietveld method was used in the calculations. This is important, because nanostructures do not possess the same crystal parameters as the bulk and accurate real structural parameters should be used in the calculations. Based on these values, the crystal structures were simulated and the electronic band structures were calculated within the density functional theory (DFT). Results from the density of state (DOS) studies shows that the band-gap narrowing is due to the shifting of the valence and conduction bands. From our theoretical results, we can conclude that the narrowing of the bandgaps of MgO nanostructures is a consequence of the increase of their lattice parameters. The calculated results exhibit this trend and are in good agreement with the experimental results.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13204-018-0859-9</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2190-5509
ispartof Applied nanoscience, 2018-10, Vol.8 (7), p.1621-1628
issn 2190-5509
2190-5517
language eng
recordid cdi_proquest_journals_2090662635
source SpringerLink Journals
subjects Band theory
Chemistry and Materials Science
Conduction bands
Crystal structure
Crystallites
Density functional theory
Density of states
Dependence
Diffraction
First principles
Lattice parameters
Magnesium oxide
Materials Science
Mathematical analysis
Membrane Biology
Nanochemistry
Nanostructure
Nanotechnology
Nanotechnology and Microengineering
Review Article
Rietveld method
Structural analysis
Superconductors (materials)
X-ray diffraction
Zinc oxide
title Comparison of experimental and first-principle results of band-gap narrowing of MgO nanostructures and their dependence on crystal structural parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A03%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20experimental%20and%20first-principle%20results%20of%20band-gap%20narrowing%20of%20MgO%20nanostructures%20and%20their%20dependence%20on%20crystal%20structural%20parameters&rft.jtitle=Applied%20nanoscience&rft.au=Kamarulzaman,%20N.&rft.date=2018-10-01&rft.volume=8&rft.issue=7&rft.spage=1621&rft.epage=1628&rft.pages=1621-1628&rft.issn=2190-5509&rft.eissn=2190-5517&rft_id=info:doi/10.1007/s13204-018-0859-9&rft_dat=%3Cproquest_cross%3E2090662635%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090662635&rft_id=info:pmid/&rfr_iscdi=true