Power Supply- and Temperature-Aware I/O Buffer Model for Signal-Power Integrity Simulation

This paper presents the development and evaluation of a large-signal equivalent circuit model that accounts for the power supply fluctuation and temperature variation of I/O buffers circuit designed based on the fully depleted silicon on insulator (FDSOI) 28 nm process for signal-power integrity (SP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-9
Hauptverfasser: Chaari, Abdelkader, Zayer, Fakhreddine, Souilem, Malek, Dghais, Wael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 2018
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2018
creator Chaari, Abdelkader
Zayer, Fakhreddine
Souilem, Malek
Dghais, Wael
description This paper presents the development and evaluation of a large-signal equivalent circuit model that accounts for the power supply fluctuation and temperature variation of I/O buffers circuit designed based on the fully depleted silicon on insulator (FDSOI) 28 nm process for signal-power integrity (SPI) simulation. A solid electrical analysis based on the working mechanisms of the nominal I/O buffer information specification- (IBIS-) like model is presented to support the derivation of an accurate and computationally efficient behavioral model that captures the essential effects of the power supply bouncing under temperature variation. The formulation and extraction of the Lagrange interpolating polynomial are investigated to extend the nominal equivalent circuit model. The generated behavioral model is implemented using the Newton-Neville’s formula and validated in simultaneous switching output buffers (SSO) scenario under temperature variation. The numerical results show a good prediction accuracy of the time domain voltage and current waveforms as well as the eye diagram of the high-speed communication I/O link while speeding-up the transient simulation compared to the transistor level model.
doi_str_mv 10.1155/2018/1356538
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2090630269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090630269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-f35b1dbb0c430afd59a381ea7093d7e96dc67a1a8f800d309e0d66cb3fd1aa373</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pzbMUPGrcS7Ok7XEOfwyUCU4QL-WteZkdXVvTlrH_3owOPHrKI3zeD76MXQq4E0KpUQgiHgmptJLxERsIpSVXYhwd-xrCMReh_DxlZ02zBgiFEvGAfb1VW3LBe1fXxY4HWJpgQZuaHLadIz7ZoqNgNpoH9521Hr5WhorAVr4lX5VY8L5_Vra0cnm789-brsA2r8pzdmKxaOji8A7Zx-PDYvrMX-ZPs-nkhWdSQ8utVEthlkvIxhLQGpWgjAVhBIk0ESXaZDpCgbGNAYyEhMBonS2lNQJRRnLIrvu5tat-OmradF11zt_WpCEkoCWEOvHqtleZq5rGkU1rl2_Q7VIB6T69dJ9eekjP85uef-elwW3-n77qNXlDFv90CEr57b9DiXh_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090630269</pqid></control><display><type>article</type><title>Power Supply- and Temperature-Aware I/O Buffer Model for Signal-Power Integrity Simulation</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Chaari, Abdelkader ; Zayer, Fakhreddine ; Souilem, Malek ; Dghais, Wael</creator><contributor>Lo Schiavo, Alessandro</contributor><creatorcontrib>Chaari, Abdelkader ; Zayer, Fakhreddine ; Souilem, Malek ; Dghais, Wael ; Lo Schiavo, Alessandro</creatorcontrib><description>This paper presents the development and evaluation of a large-signal equivalent circuit model that accounts for the power supply fluctuation and temperature variation of I/O buffers circuit designed based on the fully depleted silicon on insulator (FDSOI) 28 nm process for signal-power integrity (SPI) simulation. A solid electrical analysis based on the working mechanisms of the nominal I/O buffer information specification- (IBIS-) like model is presented to support the derivation of an accurate and computationally efficient behavioral model that captures the essential effects of the power supply bouncing under temperature variation. The formulation and extraction of the Lagrange interpolating polynomial are investigated to extend the nominal equivalent circuit model. The generated behavioral model is implemented using the Newton-Neville’s formula and validated in simultaneous switching output buffers (SSO) scenario under temperature variation. The numerical results show a good prediction accuracy of the time domain voltage and current waveforms as well as the eye diagram of the high-speed communication I/O link while speeding-up the transient simulation compared to the transistor level model.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2018/1356538</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Automation ; Buffers ; Circuit design ; Communication ; Computer simulation ; Design ; Equivalent circuits ; Integrity ; Intellectual property ; Mathematical analysis ; Mathematical models ; Packaging ; Power supplies ; Power supply ; Semiconductors ; Signal processing ; Transistors ; Variation ; Waveforms</subject><ispartof>Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-9</ispartof><rights>Copyright © 2018 Wael Dghais et al.</rights><rights>Copyright © 2018 Wael Dghais et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-f35b1dbb0c430afd59a381ea7093d7e96dc67a1a8f800d309e0d66cb3fd1aa373</citedby><cites>FETCH-LOGICAL-c360t-f35b1dbb0c430afd59a381ea7093d7e96dc67a1a8f800d309e0d66cb3fd1aa373</cites><orcidid>0000-0002-1777-2213 ; 0000-0002-0002-8965 ; 0000-0003-1989-5951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Lo Schiavo, Alessandro</contributor><creatorcontrib>Chaari, Abdelkader</creatorcontrib><creatorcontrib>Zayer, Fakhreddine</creatorcontrib><creatorcontrib>Souilem, Malek</creatorcontrib><creatorcontrib>Dghais, Wael</creatorcontrib><title>Power Supply- and Temperature-Aware I/O Buffer Model for Signal-Power Integrity Simulation</title><title>Mathematical problems in engineering</title><description>This paper presents the development and evaluation of a large-signal equivalent circuit model that accounts for the power supply fluctuation and temperature variation of I/O buffers circuit designed based on the fully depleted silicon on insulator (FDSOI) 28 nm process for signal-power integrity (SPI) simulation. A solid electrical analysis based on the working mechanisms of the nominal I/O buffer information specification- (IBIS-) like model is presented to support the derivation of an accurate and computationally efficient behavioral model that captures the essential effects of the power supply bouncing under temperature variation. The formulation and extraction of the Lagrange interpolating polynomial are investigated to extend the nominal equivalent circuit model. The generated behavioral model is implemented using the Newton-Neville’s formula and validated in simultaneous switching output buffers (SSO) scenario under temperature variation. The numerical results show a good prediction accuracy of the time domain voltage and current waveforms as well as the eye diagram of the high-speed communication I/O link while speeding-up the transient simulation compared to the transistor level model.</description><subject>Automation</subject><subject>Buffers</subject><subject>Circuit design</subject><subject>Communication</subject><subject>Computer simulation</subject><subject>Design</subject><subject>Equivalent circuits</subject><subject>Integrity</subject><subject>Intellectual property</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Packaging</subject><subject>Power supplies</subject><subject>Power supply</subject><subject>Semiconductors</subject><subject>Signal processing</subject><subject>Transistors</subject><subject>Variation</subject><subject>Waveforms</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M9LwzAUB_AgCs7pzbMUPGrcS7Ok7XEOfwyUCU4QL-WteZkdXVvTlrH_3owOPHrKI3zeD76MXQq4E0KpUQgiHgmptJLxERsIpSVXYhwd-xrCMReh_DxlZ02zBgiFEvGAfb1VW3LBe1fXxY4HWJpgQZuaHLadIz7ZoqNgNpoH9521Hr5WhorAVr4lX5VY8L5_Vra0cnm789-brsA2r8pzdmKxaOji8A7Zx-PDYvrMX-ZPs-nkhWdSQ8utVEthlkvIxhLQGpWgjAVhBIk0ESXaZDpCgbGNAYyEhMBonS2lNQJRRnLIrvu5tat-OmradF11zt_WpCEkoCWEOvHqtleZq5rGkU1rl2_Q7VIB6T69dJ9eekjP85uef-elwW3-n77qNXlDFv90CEr57b9DiXh_</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Chaari, Abdelkader</creator><creator>Zayer, Fakhreddine</creator><creator>Souilem, Malek</creator><creator>Dghais, Wael</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1777-2213</orcidid><orcidid>https://orcid.org/0000-0002-0002-8965</orcidid><orcidid>https://orcid.org/0000-0003-1989-5951</orcidid></search><sort><creationdate>20180101</creationdate><title>Power Supply- and Temperature-Aware I/O Buffer Model for Signal-Power Integrity Simulation</title><author>Chaari, Abdelkader ; Zayer, Fakhreddine ; Souilem, Malek ; Dghais, Wael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-f35b1dbb0c430afd59a381ea7093d7e96dc67a1a8f800d309e0d66cb3fd1aa373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Automation</topic><topic>Buffers</topic><topic>Circuit design</topic><topic>Communication</topic><topic>Computer simulation</topic><topic>Design</topic><topic>Equivalent circuits</topic><topic>Integrity</topic><topic>Intellectual property</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Packaging</topic><topic>Power supplies</topic><topic>Power supply</topic><topic>Semiconductors</topic><topic>Signal processing</topic><topic>Transistors</topic><topic>Variation</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaari, Abdelkader</creatorcontrib><creatorcontrib>Zayer, Fakhreddine</creatorcontrib><creatorcontrib>Souilem, Malek</creatorcontrib><creatorcontrib>Dghais, Wael</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaari, Abdelkader</au><au>Zayer, Fakhreddine</au><au>Souilem, Malek</au><au>Dghais, Wael</au><au>Lo Schiavo, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power Supply- and Temperature-Aware I/O Buffer Model for Signal-Power Integrity Simulation</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>This paper presents the development and evaluation of a large-signal equivalent circuit model that accounts for the power supply fluctuation and temperature variation of I/O buffers circuit designed based on the fully depleted silicon on insulator (FDSOI) 28 nm process for signal-power integrity (SPI) simulation. A solid electrical analysis based on the working mechanisms of the nominal I/O buffer information specification- (IBIS-) like model is presented to support the derivation of an accurate and computationally efficient behavioral model that captures the essential effects of the power supply bouncing under temperature variation. The formulation and extraction of the Lagrange interpolating polynomial are investigated to extend the nominal equivalent circuit model. The generated behavioral model is implemented using the Newton-Neville’s formula and validated in simultaneous switching output buffers (SSO) scenario under temperature variation. The numerical results show a good prediction accuracy of the time domain voltage and current waveforms as well as the eye diagram of the high-speed communication I/O link while speeding-up the transient simulation compared to the transistor level model.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/1356538</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1777-2213</orcidid><orcidid>https://orcid.org/0000-0002-0002-8965</orcidid><orcidid>https://orcid.org/0000-0003-1989-5951</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-9
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2090630269
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Automation
Buffers
Circuit design
Communication
Computer simulation
Design
Equivalent circuits
Integrity
Intellectual property
Mathematical analysis
Mathematical models
Packaging
Power supplies
Power supply
Semiconductors
Signal processing
Transistors
Variation
Waveforms
title Power Supply- and Temperature-Aware I/O Buffer Model for Signal-Power Integrity Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20Supply-%20and%20Temperature-Aware%20I/O%20Buffer%20Model%20for%20Signal-Power%20Integrity%20Simulation&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Chaari,%20Abdelkader&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2018/1356538&rft_dat=%3Cproquest_cross%3E2090630269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090630269&rft_id=info:pmid/&rfr_iscdi=true