Optimization of the issuance of evacuation orders under evolving hurricane conditions
•Stochastic programming model to optimize issuance of evacuation orders.•Solution procedure based on progressive hedging.•Large-scale realistic case study presented. This paper develops a bi-level programming model to optimize the issuance of evacuation orders with explicit consideration of (i) the...
Gespeichert in:
Veröffentlicht in: | Transportation research. Part B: methodological 2017-01, Vol.95, p.285-304 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 304 |
---|---|
container_issue | |
container_start_page | 285 |
container_title | Transportation research. Part B: methodological |
container_volume | 95 |
creator | Yi, Wenqi Nozick, Linda Davidson, Rachel Blanton, Brian Colle, Brian |
description | •Stochastic programming model to optimize issuance of evacuation orders.•Solution procedure based on progressive hedging.•Large-scale realistic case study presented.
This paper develops a bi-level programming model to optimize the issuance of evacuation orders with explicit consideration of (i) the highly uncertain evolution of the storm, and (ii) the complexity of the behavioral reaction to evolving storm conditions. A solution procedure based on progressive hedging is developed. A realistic case study for the eastern portion of the state of North Carolina is presented. Through the case study we demonstrate (1) the value of developing an evacuation order policy based on the evolution of the storm in contrast to a static policy; (2) the richness in the insights that can be provided by linking the behavioral models for evacuation decision-making with dynamic traffic assignment-based network flow models in a hurricane context; and (3) the computational promise of a progressive hedging-based solution procedure to solve large instances of the model. |
doi_str_mv | 10.1016/j.trb.2016.10.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2090560645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0191261516305331</els_id><sourcerecordid>2090560645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-8c88ee62c7d300969128b332bb058919e6447baef75a6763c9abda0476bbba113</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewisU4Yx4kTixWqeEmVuqFry3Ym1FEbFzuJBF-Po3bNal73zowOIfcUMgqUP3bZ4HWWxzTWGUB9QRa0rkSaM15dkgVQQdOc0_Ka3ITQAQArgC7IdnMc7MH-qsG6PnFtMuwwsSGMqjc41zgpM56nvkEfkrGPIfbdfrL9V7IbvbdG9ZgY1zd2VoZbctWqfcC7c1yS7evL5-o9XW_ePlbP69QUTAxpbeoakeemahiA4ILmtWYs1xrKWlCBvCgqrbCtSsUrzoxQulFQVFxrrShlS_Jw2nv07nvEMMjOjb6PJ2UOAkoOvCijip5UxrsQPLby6O1B-R9JQc70ZCcjPTnTm1uRXvQ8nTwY358sehmMxciksR7NIBtn_3H_AdT7eJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090560645</pqid></control><display><type>article</type><title>Optimization of the issuance of evacuation orders under evolving hurricane conditions</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yi, Wenqi ; Nozick, Linda ; Davidson, Rachel ; Blanton, Brian ; Colle, Brian</creator><creatorcontrib>Yi, Wenqi ; Nozick, Linda ; Davidson, Rachel ; Blanton, Brian ; Colle, Brian</creatorcontrib><description>•Stochastic programming model to optimize issuance of evacuation orders.•Solution procedure based on progressive hedging.•Large-scale realistic case study presented.
This paper develops a bi-level programming model to optimize the issuance of evacuation orders with explicit consideration of (i) the highly uncertain evolution of the storm, and (ii) the complexity of the behavioral reaction to evolving storm conditions. A solution procedure based on progressive hedging is developed. A realistic case study for the eastern portion of the state of North Carolina is presented. Through the case study we demonstrate (1) the value of developing an evacuation order policy based on the evolution of the storm in contrast to a static policy; (2) the richness in the insights that can be provided by linking the behavioral models for evacuation decision-making with dynamic traffic assignment-based network flow models in a hurricane context; and (3) the computational promise of a progressive hedging-based solution procedure to solve large instances of the model.</description><identifier>ISSN: 0191-2615</identifier><identifier>EISSN: 1879-2367</identifier><identifier>DOI: 10.1016/j.trb.2016.10.008</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Case studies ; Computer applications ; Decision making ; Dynamic traffic assignment ; Evacuation ; Evacuations & rescues ; Evolution ; Hedging ; Hurricane evacuation modeling ; Hurricanes ; Multi-stage stochastic programming ; Optimization ; Progressive hedging ; Storms ; Traffic flow ; Traffic models</subject><ispartof>Transportation research. Part B: methodological, 2017-01, Vol.95, p.285-304</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jan 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-8c88ee62c7d300969128b332bb058919e6447baef75a6763c9abda0476bbba113</citedby><cites>FETCH-LOGICAL-c439t-8c88ee62c7d300969128b332bb058919e6447baef75a6763c9abda0476bbba113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.trb.2016.10.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Yi, Wenqi</creatorcontrib><creatorcontrib>Nozick, Linda</creatorcontrib><creatorcontrib>Davidson, Rachel</creatorcontrib><creatorcontrib>Blanton, Brian</creatorcontrib><creatorcontrib>Colle, Brian</creatorcontrib><title>Optimization of the issuance of evacuation orders under evolving hurricane conditions</title><title>Transportation research. Part B: methodological</title><description>•Stochastic programming model to optimize issuance of evacuation orders.•Solution procedure based on progressive hedging.•Large-scale realistic case study presented.
This paper develops a bi-level programming model to optimize the issuance of evacuation orders with explicit consideration of (i) the highly uncertain evolution of the storm, and (ii) the complexity of the behavioral reaction to evolving storm conditions. A solution procedure based on progressive hedging is developed. A realistic case study for the eastern portion of the state of North Carolina is presented. Through the case study we demonstrate (1) the value of developing an evacuation order policy based on the evolution of the storm in contrast to a static policy; (2) the richness in the insights that can be provided by linking the behavioral models for evacuation decision-making with dynamic traffic assignment-based network flow models in a hurricane context; and (3) the computational promise of a progressive hedging-based solution procedure to solve large instances of the model.</description><subject>Case studies</subject><subject>Computer applications</subject><subject>Decision making</subject><subject>Dynamic traffic assignment</subject><subject>Evacuation</subject><subject>Evacuations & rescues</subject><subject>Evolution</subject><subject>Hedging</subject><subject>Hurricane evacuation modeling</subject><subject>Hurricanes</subject><subject>Multi-stage stochastic programming</subject><subject>Optimization</subject><subject>Progressive hedging</subject><subject>Storms</subject><subject>Traffic flow</subject><subject>Traffic models</subject><issn>0191-2615</issn><issn>1879-2367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewisU4Yx4kTixWqeEmVuqFry3Ym1FEbFzuJBF-Po3bNal73zowOIfcUMgqUP3bZ4HWWxzTWGUB9QRa0rkSaM15dkgVQQdOc0_Ka3ITQAQArgC7IdnMc7MH-qsG6PnFtMuwwsSGMqjc41zgpM56nvkEfkrGPIfbdfrL9V7IbvbdG9ZgY1zd2VoZbctWqfcC7c1yS7evL5-o9XW_ePlbP69QUTAxpbeoakeemahiA4ILmtWYs1xrKWlCBvCgqrbCtSsUrzoxQulFQVFxrrShlS_Jw2nv07nvEMMjOjb6PJ2UOAkoOvCijip5UxrsQPLby6O1B-R9JQc70ZCcjPTnTm1uRXvQ8nTwY358sehmMxciksR7NIBtn_3H_AdT7eJU</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Yi, Wenqi</creator><creator>Nozick, Linda</creator><creator>Davidson, Rachel</creator><creator>Blanton, Brian</creator><creator>Colle, Brian</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>201701</creationdate><title>Optimization of the issuance of evacuation orders under evolving hurricane conditions</title><author>Yi, Wenqi ; Nozick, Linda ; Davidson, Rachel ; Blanton, Brian ; Colle, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-8c88ee62c7d300969128b332bb058919e6447baef75a6763c9abda0476bbba113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Case studies</topic><topic>Computer applications</topic><topic>Decision making</topic><topic>Dynamic traffic assignment</topic><topic>Evacuation</topic><topic>Evacuations & rescues</topic><topic>Evolution</topic><topic>Hedging</topic><topic>Hurricane evacuation modeling</topic><topic>Hurricanes</topic><topic>Multi-stage stochastic programming</topic><topic>Optimization</topic><topic>Progressive hedging</topic><topic>Storms</topic><topic>Traffic flow</topic><topic>Traffic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Wenqi</creatorcontrib><creatorcontrib>Nozick, Linda</creatorcontrib><creatorcontrib>Davidson, Rachel</creatorcontrib><creatorcontrib>Blanton, Brian</creatorcontrib><creatorcontrib>Colle, Brian</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Transportation research. Part B: methodological</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Wenqi</au><au>Nozick, Linda</au><au>Davidson, Rachel</au><au>Blanton, Brian</au><au>Colle, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of the issuance of evacuation orders under evolving hurricane conditions</atitle><jtitle>Transportation research. Part B: methodological</jtitle><date>2017-01</date><risdate>2017</risdate><volume>95</volume><spage>285</spage><epage>304</epage><pages>285-304</pages><issn>0191-2615</issn><eissn>1879-2367</eissn><abstract>•Stochastic programming model to optimize issuance of evacuation orders.•Solution procedure based on progressive hedging.•Large-scale realistic case study presented.
This paper develops a bi-level programming model to optimize the issuance of evacuation orders with explicit consideration of (i) the highly uncertain evolution of the storm, and (ii) the complexity of the behavioral reaction to evolving storm conditions. A solution procedure based on progressive hedging is developed. A realistic case study for the eastern portion of the state of North Carolina is presented. Through the case study we demonstrate (1) the value of developing an evacuation order policy based on the evolution of the storm in contrast to a static policy; (2) the richness in the insights that can be provided by linking the behavioral models for evacuation decision-making with dynamic traffic assignment-based network flow models in a hurricane context; and (3) the computational promise of a progressive hedging-based solution procedure to solve large instances of the model.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.trb.2016.10.008</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0191-2615 |
ispartof | Transportation research. Part B: methodological, 2017-01, Vol.95, p.285-304 |
issn | 0191-2615 1879-2367 |
language | eng |
recordid | cdi_proquest_journals_2090560645 |
source | Access via ScienceDirect (Elsevier) |
subjects | Case studies Computer applications Decision making Dynamic traffic assignment Evacuation Evacuations & rescues Evolution Hedging Hurricane evacuation modeling Hurricanes Multi-stage stochastic programming Optimization Progressive hedging Storms Traffic flow Traffic models |
title | Optimization of the issuance of evacuation orders under evolving hurricane conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T19%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20the%20issuance%20of%20evacuation%20orders%20under%20evolving%20hurricane%20conditions&rft.jtitle=Transportation%20research.%20Part%20B:%20methodological&rft.au=Yi,%20Wenqi&rft.date=2017-01&rft.volume=95&rft.spage=285&rft.epage=304&rft.pages=285-304&rft.issn=0191-2615&rft.eissn=1879-2367&rft_id=info:doi/10.1016/j.trb.2016.10.008&rft_dat=%3Cproquest_cross%3E2090560645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090560645&rft_id=info:pmid/&rft_els_id=S0191261516305331&rfr_iscdi=true |