Optimization of the issuance of evacuation orders under evolving hurricane conditions

•Stochastic programming model to optimize issuance of evacuation orders.•Solution procedure based on progressive hedging.•Large-scale realistic case study presented. This paper develops a bi-level programming model to optimize the issuance of evacuation orders with explicit consideration of (i) the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research. Part B: methodological 2017-01, Vol.95, p.285-304
Hauptverfasser: Yi, Wenqi, Nozick, Linda, Davidson, Rachel, Blanton, Brian, Colle, Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 304
container_issue
container_start_page 285
container_title Transportation research. Part B: methodological
container_volume 95
creator Yi, Wenqi
Nozick, Linda
Davidson, Rachel
Blanton, Brian
Colle, Brian
description •Stochastic programming model to optimize issuance of evacuation orders.•Solution procedure based on progressive hedging.•Large-scale realistic case study presented. This paper develops a bi-level programming model to optimize the issuance of evacuation orders with explicit consideration of (i) the highly uncertain evolution of the storm, and (ii) the complexity of the behavioral reaction to evolving storm conditions. A solution procedure based on progressive hedging is developed. A realistic case study for the eastern portion of the state of North Carolina is presented. Through the case study we demonstrate (1) the value of developing an evacuation order policy based on the evolution of the storm in contrast to a static policy; (2) the richness in the insights that can be provided by linking the behavioral models for evacuation decision-making with dynamic traffic assignment-based network flow models in a hurricane context; and (3) the computational promise of a progressive hedging-based solution procedure to solve large instances of the model.
doi_str_mv 10.1016/j.trb.2016.10.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2090560645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0191261516305331</els_id><sourcerecordid>2090560645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-8c88ee62c7d300969128b332bb058919e6447baef75a6763c9abda0476bbba113</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewisU4Yx4kTixWqeEmVuqFry3Ym1FEbFzuJBF-Po3bNal73zowOIfcUMgqUP3bZ4HWWxzTWGUB9QRa0rkSaM15dkgVQQdOc0_Ka3ITQAQArgC7IdnMc7MH-qsG6PnFtMuwwsSGMqjc41zgpM56nvkEfkrGPIfbdfrL9V7IbvbdG9ZgY1zd2VoZbctWqfcC7c1yS7evL5-o9XW_ePlbP69QUTAxpbeoakeemahiA4ILmtWYs1xrKWlCBvCgqrbCtSsUrzoxQulFQVFxrrShlS_Jw2nv07nvEMMjOjb6PJ2UOAkoOvCijip5UxrsQPLby6O1B-R9JQc70ZCcjPTnTm1uRXvQ8nTwY358sehmMxciksR7NIBtn_3H_AdT7eJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090560645</pqid></control><display><type>article</type><title>Optimization of the issuance of evacuation orders under evolving hurricane conditions</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yi, Wenqi ; Nozick, Linda ; Davidson, Rachel ; Blanton, Brian ; Colle, Brian</creator><creatorcontrib>Yi, Wenqi ; Nozick, Linda ; Davidson, Rachel ; Blanton, Brian ; Colle, Brian</creatorcontrib><description>•Stochastic programming model to optimize issuance of evacuation orders.•Solution procedure based on progressive hedging.•Large-scale realistic case study presented. This paper develops a bi-level programming model to optimize the issuance of evacuation orders with explicit consideration of (i) the highly uncertain evolution of the storm, and (ii) the complexity of the behavioral reaction to evolving storm conditions. A solution procedure based on progressive hedging is developed. A realistic case study for the eastern portion of the state of North Carolina is presented. Through the case study we demonstrate (1) the value of developing an evacuation order policy based on the evolution of the storm in contrast to a static policy; (2) the richness in the insights that can be provided by linking the behavioral models for evacuation decision-making with dynamic traffic assignment-based network flow models in a hurricane context; and (3) the computational promise of a progressive hedging-based solution procedure to solve large instances of the model.</description><identifier>ISSN: 0191-2615</identifier><identifier>EISSN: 1879-2367</identifier><identifier>DOI: 10.1016/j.trb.2016.10.008</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Case studies ; Computer applications ; Decision making ; Dynamic traffic assignment ; Evacuation ; Evacuations &amp; rescues ; Evolution ; Hedging ; Hurricane evacuation modeling ; Hurricanes ; Multi-stage stochastic programming ; Optimization ; Progressive hedging ; Storms ; Traffic flow ; Traffic models</subject><ispartof>Transportation research. Part B: methodological, 2017-01, Vol.95, p.285-304</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jan 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-8c88ee62c7d300969128b332bb058919e6447baef75a6763c9abda0476bbba113</citedby><cites>FETCH-LOGICAL-c439t-8c88ee62c7d300969128b332bb058919e6447baef75a6763c9abda0476bbba113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.trb.2016.10.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Yi, Wenqi</creatorcontrib><creatorcontrib>Nozick, Linda</creatorcontrib><creatorcontrib>Davidson, Rachel</creatorcontrib><creatorcontrib>Blanton, Brian</creatorcontrib><creatorcontrib>Colle, Brian</creatorcontrib><title>Optimization of the issuance of evacuation orders under evolving hurricane conditions</title><title>Transportation research. Part B: methodological</title><description>•Stochastic programming model to optimize issuance of evacuation orders.•Solution procedure based on progressive hedging.•Large-scale realistic case study presented. This paper develops a bi-level programming model to optimize the issuance of evacuation orders with explicit consideration of (i) the highly uncertain evolution of the storm, and (ii) the complexity of the behavioral reaction to evolving storm conditions. A solution procedure based on progressive hedging is developed. A realistic case study for the eastern portion of the state of North Carolina is presented. Through the case study we demonstrate (1) the value of developing an evacuation order policy based on the evolution of the storm in contrast to a static policy; (2) the richness in the insights that can be provided by linking the behavioral models for evacuation decision-making with dynamic traffic assignment-based network flow models in a hurricane context; and (3) the computational promise of a progressive hedging-based solution procedure to solve large instances of the model.</description><subject>Case studies</subject><subject>Computer applications</subject><subject>Decision making</subject><subject>Dynamic traffic assignment</subject><subject>Evacuation</subject><subject>Evacuations &amp; rescues</subject><subject>Evolution</subject><subject>Hedging</subject><subject>Hurricane evacuation modeling</subject><subject>Hurricanes</subject><subject>Multi-stage stochastic programming</subject><subject>Optimization</subject><subject>Progressive hedging</subject><subject>Storms</subject><subject>Traffic flow</subject><subject>Traffic models</subject><issn>0191-2615</issn><issn>1879-2367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewisU4Yx4kTixWqeEmVuqFry3Ym1FEbFzuJBF-Po3bNal73zowOIfcUMgqUP3bZ4HWWxzTWGUB9QRa0rkSaM15dkgVQQdOc0_Ka3ITQAQArgC7IdnMc7MH-qsG6PnFtMuwwsSGMqjc41zgpM56nvkEfkrGPIfbdfrL9V7IbvbdG9ZgY1zd2VoZbctWqfcC7c1yS7evL5-o9XW_ePlbP69QUTAxpbeoakeemahiA4ILmtWYs1xrKWlCBvCgqrbCtSsUrzoxQulFQVFxrrShlS_Jw2nv07nvEMMjOjb6PJ2UOAkoOvCijip5UxrsQPLby6O1B-R9JQc70ZCcjPTnTm1uRXvQ8nTwY358sehmMxciksR7NIBtn_3H_AdT7eJU</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Yi, Wenqi</creator><creator>Nozick, Linda</creator><creator>Davidson, Rachel</creator><creator>Blanton, Brian</creator><creator>Colle, Brian</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>201701</creationdate><title>Optimization of the issuance of evacuation orders under evolving hurricane conditions</title><author>Yi, Wenqi ; Nozick, Linda ; Davidson, Rachel ; Blanton, Brian ; Colle, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-8c88ee62c7d300969128b332bb058919e6447baef75a6763c9abda0476bbba113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Case studies</topic><topic>Computer applications</topic><topic>Decision making</topic><topic>Dynamic traffic assignment</topic><topic>Evacuation</topic><topic>Evacuations &amp; rescues</topic><topic>Evolution</topic><topic>Hedging</topic><topic>Hurricane evacuation modeling</topic><topic>Hurricanes</topic><topic>Multi-stage stochastic programming</topic><topic>Optimization</topic><topic>Progressive hedging</topic><topic>Storms</topic><topic>Traffic flow</topic><topic>Traffic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Wenqi</creatorcontrib><creatorcontrib>Nozick, Linda</creatorcontrib><creatorcontrib>Davidson, Rachel</creatorcontrib><creatorcontrib>Blanton, Brian</creatorcontrib><creatorcontrib>Colle, Brian</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Transportation research. Part B: methodological</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Wenqi</au><au>Nozick, Linda</au><au>Davidson, Rachel</au><au>Blanton, Brian</au><au>Colle, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of the issuance of evacuation orders under evolving hurricane conditions</atitle><jtitle>Transportation research. Part B: methodological</jtitle><date>2017-01</date><risdate>2017</risdate><volume>95</volume><spage>285</spage><epage>304</epage><pages>285-304</pages><issn>0191-2615</issn><eissn>1879-2367</eissn><abstract>•Stochastic programming model to optimize issuance of evacuation orders.•Solution procedure based on progressive hedging.•Large-scale realistic case study presented. This paper develops a bi-level programming model to optimize the issuance of evacuation orders with explicit consideration of (i) the highly uncertain evolution of the storm, and (ii) the complexity of the behavioral reaction to evolving storm conditions. A solution procedure based on progressive hedging is developed. A realistic case study for the eastern portion of the state of North Carolina is presented. Through the case study we demonstrate (1) the value of developing an evacuation order policy based on the evolution of the storm in contrast to a static policy; (2) the richness in the insights that can be provided by linking the behavioral models for evacuation decision-making with dynamic traffic assignment-based network flow models in a hurricane context; and (3) the computational promise of a progressive hedging-based solution procedure to solve large instances of the model.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.trb.2016.10.008</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0191-2615
ispartof Transportation research. Part B: methodological, 2017-01, Vol.95, p.285-304
issn 0191-2615
1879-2367
language eng
recordid cdi_proquest_journals_2090560645
source Access via ScienceDirect (Elsevier)
subjects Case studies
Computer applications
Decision making
Dynamic traffic assignment
Evacuation
Evacuations & rescues
Evolution
Hedging
Hurricane evacuation modeling
Hurricanes
Multi-stage stochastic programming
Optimization
Progressive hedging
Storms
Traffic flow
Traffic models
title Optimization of the issuance of evacuation orders under evolving hurricane conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T19%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20the%20issuance%20of%20evacuation%20orders%20under%20evolving%20hurricane%20conditions&rft.jtitle=Transportation%20research.%20Part%20B:%20methodological&rft.au=Yi,%20Wenqi&rft.date=2017-01&rft.volume=95&rft.spage=285&rft.epage=304&rft.pages=285-304&rft.issn=0191-2615&rft.eissn=1879-2367&rft_id=info:doi/10.1016/j.trb.2016.10.008&rft_dat=%3Cproquest_cross%3E2090560645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090560645&rft_id=info:pmid/&rft_els_id=S0191261516305331&rfr_iscdi=true