Analysis of InAsSb/GaAs submonolayer stacks
•A TESb flush leads to Sb incorporation into InAs/GaAs submonolayer stacks.•The Sb incorporation can be described by a Langmuir-type adsorption model.•The localization depth can be tuned with the GaAs spacer thickness.•Charge-carrier localization is only found below a critical thickness. InAsSb subm...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2018-07, Vol.494, p.1-7 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Journal of crystal growth |
container_volume | 494 |
creator | Quandt, David Bläsing, Jürgen Strittmatter, André |
description | •A TESb flush leads to Sb incorporation into InAs/GaAs submonolayer stacks.•The Sb incorporation can be described by a Langmuir-type adsorption model.•The localization depth can be tuned with the GaAs spacer thickness.•Charge-carrier localization is only found below a critical thickness.
InAsSb submonolayer (SML) islands separated by GaAs spacer layers show three-dimensional charge carrier localization centers of very high density. We advance the understanding of the submonolayer growth technique by combination of structural and optical data. Our analysis of the Sb incorporation by Langmuir-type adsorption model reveals involvement of a slow reaction component. In search for the governing mechanism for electronic coupling we monitored structural parameters such as interface roughness by X-ray reflection measurements. Interestingly, no significant structural changes with respect to the spacer thickness are found. Still, a critical upper thickness limit to observe electronic changes of 1.8–1.9 MLs GaAs is found. Below this critical thickness, three-dimensional charge carrier localization is present in the SML stack and the average localization depth can be controlled through spacer thickness. |
doi_str_mv | 10.1016/j.jcrysgro.2018.04.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2090550011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024818302033</els_id><sourcerecordid>2090550011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-c767163671121067ceb8effe3905516ae6038c3a2f0434b0b917470d53f4eff63</originalsourceid><addsrcrecordid>eNqFkMFOwzAQRC0EEqXwCygSR5R013ac9EZUQalUiQNwthzXQQltXLwpUv4eV4Uzl9nLzGj2MXaLkCGgmnVZZ8NIH8FnHLDMQGYg8IxNsCxEmgPwczaJylPgsrxkV0QdQEwiTNh91ZvtSC0lvklWfUWv9WxpKkroUO9877dmdCGhwdhPumYXjdmSu_m9U_b-9Pi2eE7XL8vVolqnVkgYUluoApWIghxBFdbVpWsaJ-aQ56iMUyBKKwxvQApZQz3HQhawyUUjo0-JKbs79e6D_zo4GnTnDyHuJM3hWBLHY3Spk8sGTxRco_eh3ZkwagR9BKM7_QdGH8FokDqCicGHU9DFH75bFzTZ1vXWbdrg7KA3vv2v4geB821Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090550011</pqid></control><display><type>article</type><title>Analysis of InAsSb/GaAs submonolayer stacks</title><source>Elsevier ScienceDirect Journals</source><creator>Quandt, David ; Bläsing, Jürgen ; Strittmatter, André</creator><creatorcontrib>Quandt, David ; Bläsing, Jürgen ; Strittmatter, André</creatorcontrib><description>•A TESb flush leads to Sb incorporation into InAs/GaAs submonolayer stacks.•The Sb incorporation can be described by a Langmuir-type adsorption model.•The localization depth can be tuned with the GaAs spacer thickness.•Charge-carrier localization is only found below a critical thickness.
InAsSb submonolayer (SML) islands separated by GaAs spacer layers show three-dimensional charge carrier localization centers of very high density. We advance the understanding of the submonolayer growth technique by combination of structural and optical data. Our analysis of the Sb incorporation by Langmuir-type adsorption model reveals involvement of a slow reaction component. In search for the governing mechanism for electronic coupling we monitored structural parameters such as interface roughness by X-ray reflection measurements. Interestingly, no significant structural changes with respect to the spacer thickness are found. Still, a critical upper thickness limit to observe electronic changes of 1.8–1.9 MLs GaAs is found. Below this critical thickness, three-dimensional charge carrier localization is present in the SML stack and the average localization depth can be controlled through spacer thickness.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2018.04.031</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Adsorption ; A1. Characterization ; A1. Photoluminescence ; A1. X-ray fluorescence ; A3. Metalorganic chemical vapor deposition ; Adsorption ; B2. Semiconducting III–V materials ; Chemical vapor deposition ; Current carriers ; Fluorescence ; Interface roughness ; Luminescence ; Position (location) ; Semiconductors ; X ray reflection ; X-rays</subject><ispartof>Journal of crystal growth, 2018-07, Vol.494, p.1-7</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-c767163671121067ceb8effe3905516ae6038c3a2f0434b0b917470d53f4eff63</citedby><cites>FETCH-LOGICAL-c340t-c767163671121067ceb8effe3905516ae6038c3a2f0434b0b917470d53f4eff63</cites><orcidid>0000-0001-5102-6911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024818302033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Quandt, David</creatorcontrib><creatorcontrib>Bläsing, Jürgen</creatorcontrib><creatorcontrib>Strittmatter, André</creatorcontrib><title>Analysis of InAsSb/GaAs submonolayer stacks</title><title>Journal of crystal growth</title><description>•A TESb flush leads to Sb incorporation into InAs/GaAs submonolayer stacks.•The Sb incorporation can be described by a Langmuir-type adsorption model.•The localization depth can be tuned with the GaAs spacer thickness.•Charge-carrier localization is only found below a critical thickness.
InAsSb submonolayer (SML) islands separated by GaAs spacer layers show three-dimensional charge carrier localization centers of very high density. We advance the understanding of the submonolayer growth technique by combination of structural and optical data. Our analysis of the Sb incorporation by Langmuir-type adsorption model reveals involvement of a slow reaction component. In search for the governing mechanism for electronic coupling we monitored structural parameters such as interface roughness by X-ray reflection measurements. Interestingly, no significant structural changes with respect to the spacer thickness are found. Still, a critical upper thickness limit to observe electronic changes of 1.8–1.9 MLs GaAs is found. Below this critical thickness, three-dimensional charge carrier localization is present in the SML stack and the average localization depth can be controlled through spacer thickness.</description><subject>A1. Adsorption</subject><subject>A1. Characterization</subject><subject>A1. Photoluminescence</subject><subject>A1. X-ray fluorescence</subject><subject>A3. Metalorganic chemical vapor deposition</subject><subject>Adsorption</subject><subject>B2. Semiconducting III–V materials</subject><subject>Chemical vapor deposition</subject><subject>Current carriers</subject><subject>Fluorescence</subject><subject>Interface roughness</subject><subject>Luminescence</subject><subject>Position (location)</subject><subject>Semiconductors</subject><subject>X ray reflection</subject><subject>X-rays</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwzAQRC0EEqXwCygSR5R013ac9EZUQalUiQNwthzXQQltXLwpUv4eV4Uzl9nLzGj2MXaLkCGgmnVZZ8NIH8FnHLDMQGYg8IxNsCxEmgPwczaJylPgsrxkV0QdQEwiTNh91ZvtSC0lvklWfUWv9WxpKkroUO9877dmdCGhwdhPumYXjdmSu_m9U_b-9Pi2eE7XL8vVolqnVkgYUluoApWIghxBFdbVpWsaJ-aQ56iMUyBKKwxvQApZQz3HQhawyUUjo0-JKbs79e6D_zo4GnTnDyHuJM3hWBLHY3Spk8sGTxRco_eh3ZkwagR9BKM7_QdGH8FokDqCicGHU9DFH75bFzTZ1vXWbdrg7KA3vv2v4geB821Z</recordid><startdate>20180715</startdate><enddate>20180715</enddate><creator>Quandt, David</creator><creator>Bläsing, Jürgen</creator><creator>Strittmatter, André</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5102-6911</orcidid></search><sort><creationdate>20180715</creationdate><title>Analysis of InAsSb/GaAs submonolayer stacks</title><author>Quandt, David ; Bläsing, Jürgen ; Strittmatter, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-c767163671121067ceb8effe3905516ae6038c3a2f0434b0b917470d53f4eff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>A1. Adsorption</topic><topic>A1. Characterization</topic><topic>A1. Photoluminescence</topic><topic>A1. X-ray fluorescence</topic><topic>A3. Metalorganic chemical vapor deposition</topic><topic>Adsorption</topic><topic>B2. Semiconducting III–V materials</topic><topic>Chemical vapor deposition</topic><topic>Current carriers</topic><topic>Fluorescence</topic><topic>Interface roughness</topic><topic>Luminescence</topic><topic>Position (location)</topic><topic>Semiconductors</topic><topic>X ray reflection</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quandt, David</creatorcontrib><creatorcontrib>Bläsing, Jürgen</creatorcontrib><creatorcontrib>Strittmatter, André</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quandt, David</au><au>Bläsing, Jürgen</au><au>Strittmatter, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of InAsSb/GaAs submonolayer stacks</atitle><jtitle>Journal of crystal growth</jtitle><date>2018-07-15</date><risdate>2018</risdate><volume>494</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>•A TESb flush leads to Sb incorporation into InAs/GaAs submonolayer stacks.•The Sb incorporation can be described by a Langmuir-type adsorption model.•The localization depth can be tuned with the GaAs spacer thickness.•Charge-carrier localization is only found below a critical thickness.
InAsSb submonolayer (SML) islands separated by GaAs spacer layers show three-dimensional charge carrier localization centers of very high density. We advance the understanding of the submonolayer growth technique by combination of structural and optical data. Our analysis of the Sb incorporation by Langmuir-type adsorption model reveals involvement of a slow reaction component. In search for the governing mechanism for electronic coupling we monitored structural parameters such as interface roughness by X-ray reflection measurements. Interestingly, no significant structural changes with respect to the spacer thickness are found. Still, a critical upper thickness limit to observe electronic changes of 1.8–1.9 MLs GaAs is found. Below this critical thickness, three-dimensional charge carrier localization is present in the SML stack and the average localization depth can be controlled through spacer thickness.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2018.04.031</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5102-6911</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2018-07, Vol.494, p.1-7 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_journals_2090550011 |
source | Elsevier ScienceDirect Journals |
subjects | A1. Adsorption A1. Characterization A1. Photoluminescence A1. X-ray fluorescence A3. Metalorganic chemical vapor deposition Adsorption B2. Semiconducting III–V materials Chemical vapor deposition Current carriers Fluorescence Interface roughness Luminescence Position (location) Semiconductors X ray reflection X-rays |
title | Analysis of InAsSb/GaAs submonolayer stacks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20InAsSb/GaAs%20submonolayer%20stacks&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Quandt,%20David&rft.date=2018-07-15&rft.volume=494&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2018.04.031&rft_dat=%3Cproquest_cross%3E2090550011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090550011&rft_id=info:pmid/&rft_els_id=S0022024818302033&rfr_iscdi=true |