Analysis of InAsSb/GaAs submonolayer stacks

•A TESb flush leads to Sb incorporation into InAs/GaAs submonolayer stacks.•The Sb incorporation can be described by a Langmuir-type adsorption model.•The localization depth can be tuned with the GaAs spacer thickness.•Charge-carrier localization is only found below a critical thickness. InAsSb subm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2018-07, Vol.494, p.1-7
Hauptverfasser: Quandt, David, Bläsing, Jürgen, Strittmatter, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title Journal of crystal growth
container_volume 494
creator Quandt, David
Bläsing, Jürgen
Strittmatter, André
description •A TESb flush leads to Sb incorporation into InAs/GaAs submonolayer stacks.•The Sb incorporation can be described by a Langmuir-type adsorption model.•The localization depth can be tuned with the GaAs spacer thickness.•Charge-carrier localization is only found below a critical thickness. InAsSb submonolayer (SML) islands separated by GaAs spacer layers show three-dimensional charge carrier localization centers of very high density. We advance the understanding of the submonolayer growth technique by combination of structural and optical data. Our analysis of the Sb incorporation by Langmuir-type adsorption model reveals involvement of a slow reaction component. In search for the governing mechanism for electronic coupling we monitored structural parameters such as interface roughness by X-ray reflection measurements. Interestingly, no significant structural changes with respect to the spacer thickness are found. Still, a critical upper thickness limit to observe electronic changes of 1.8–1.9 MLs GaAs is found. Below this critical thickness, three-dimensional charge carrier localization is present in the SML stack and the average localization depth can be controlled through spacer thickness.
doi_str_mv 10.1016/j.jcrysgro.2018.04.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2090550011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024818302033</els_id><sourcerecordid>2090550011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-c767163671121067ceb8effe3905516ae6038c3a2f0434b0b917470d53f4eff63</originalsourceid><addsrcrecordid>eNqFkMFOwzAQRC0EEqXwCygSR5R013ac9EZUQalUiQNwthzXQQltXLwpUv4eV4Uzl9nLzGj2MXaLkCGgmnVZZ8NIH8FnHLDMQGYg8IxNsCxEmgPwczaJylPgsrxkV0QdQEwiTNh91ZvtSC0lvklWfUWv9WxpKkroUO9877dmdCGhwdhPumYXjdmSu_m9U_b-9Pi2eE7XL8vVolqnVkgYUluoApWIghxBFdbVpWsaJ-aQ56iMUyBKKwxvQApZQz3HQhawyUUjo0-JKbs79e6D_zo4GnTnDyHuJM3hWBLHY3Spk8sGTxRco_eh3ZkwagR9BKM7_QdGH8FokDqCicGHU9DFH75bFzTZ1vXWbdrg7KA3vv2v4geB821Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090550011</pqid></control><display><type>article</type><title>Analysis of InAsSb/GaAs submonolayer stacks</title><source>Elsevier ScienceDirect Journals</source><creator>Quandt, David ; Bläsing, Jürgen ; Strittmatter, André</creator><creatorcontrib>Quandt, David ; Bläsing, Jürgen ; Strittmatter, André</creatorcontrib><description>•A TESb flush leads to Sb incorporation into InAs/GaAs submonolayer stacks.•The Sb incorporation can be described by a Langmuir-type adsorption model.•The localization depth can be tuned with the GaAs spacer thickness.•Charge-carrier localization is only found below a critical thickness. InAsSb submonolayer (SML) islands separated by GaAs spacer layers show three-dimensional charge carrier localization centers of very high density. We advance the understanding of the submonolayer growth technique by combination of structural and optical data. Our analysis of the Sb incorporation by Langmuir-type adsorption model reveals involvement of a slow reaction component. In search for the governing mechanism for electronic coupling we monitored structural parameters such as interface roughness by X-ray reflection measurements. Interestingly, no significant structural changes with respect to the spacer thickness are found. Still, a critical upper thickness limit to observe electronic changes of 1.8–1.9 MLs GaAs is found. Below this critical thickness, three-dimensional charge carrier localization is present in the SML stack and the average localization depth can be controlled through spacer thickness.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2018.04.031</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Adsorption ; A1. Characterization ; A1. Photoluminescence ; A1. X-ray fluorescence ; A3. Metalorganic chemical vapor deposition ; Adsorption ; B2. Semiconducting III–V materials ; Chemical vapor deposition ; Current carriers ; Fluorescence ; Interface roughness ; Luminescence ; Position (location) ; Semiconductors ; X ray reflection ; X-rays</subject><ispartof>Journal of crystal growth, 2018-07, Vol.494, p.1-7</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-c767163671121067ceb8effe3905516ae6038c3a2f0434b0b917470d53f4eff63</citedby><cites>FETCH-LOGICAL-c340t-c767163671121067ceb8effe3905516ae6038c3a2f0434b0b917470d53f4eff63</cites><orcidid>0000-0001-5102-6911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024818302033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Quandt, David</creatorcontrib><creatorcontrib>Bläsing, Jürgen</creatorcontrib><creatorcontrib>Strittmatter, André</creatorcontrib><title>Analysis of InAsSb/GaAs submonolayer stacks</title><title>Journal of crystal growth</title><description>•A TESb flush leads to Sb incorporation into InAs/GaAs submonolayer stacks.•The Sb incorporation can be described by a Langmuir-type adsorption model.•The localization depth can be tuned with the GaAs spacer thickness.•Charge-carrier localization is only found below a critical thickness. InAsSb submonolayer (SML) islands separated by GaAs spacer layers show three-dimensional charge carrier localization centers of very high density. We advance the understanding of the submonolayer growth technique by combination of structural and optical data. Our analysis of the Sb incorporation by Langmuir-type adsorption model reveals involvement of a slow reaction component. In search for the governing mechanism for electronic coupling we monitored structural parameters such as interface roughness by X-ray reflection measurements. Interestingly, no significant structural changes with respect to the spacer thickness are found. Still, a critical upper thickness limit to observe electronic changes of 1.8–1.9 MLs GaAs is found. Below this critical thickness, three-dimensional charge carrier localization is present in the SML stack and the average localization depth can be controlled through spacer thickness.</description><subject>A1. Adsorption</subject><subject>A1. Characterization</subject><subject>A1. Photoluminescence</subject><subject>A1. X-ray fluorescence</subject><subject>A3. Metalorganic chemical vapor deposition</subject><subject>Adsorption</subject><subject>B2. Semiconducting III–V materials</subject><subject>Chemical vapor deposition</subject><subject>Current carriers</subject><subject>Fluorescence</subject><subject>Interface roughness</subject><subject>Luminescence</subject><subject>Position (location)</subject><subject>Semiconductors</subject><subject>X ray reflection</subject><subject>X-rays</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwzAQRC0EEqXwCygSR5R013ac9EZUQalUiQNwthzXQQltXLwpUv4eV4Uzl9nLzGj2MXaLkCGgmnVZZ8NIH8FnHLDMQGYg8IxNsCxEmgPwczaJylPgsrxkV0QdQEwiTNh91ZvtSC0lvklWfUWv9WxpKkroUO9877dmdCGhwdhPumYXjdmSu_m9U_b-9Pi2eE7XL8vVolqnVkgYUluoApWIghxBFdbVpWsaJ-aQ56iMUyBKKwxvQApZQz3HQhawyUUjo0-JKbs79e6D_zo4GnTnDyHuJM3hWBLHY3Spk8sGTxRco_eh3ZkwagR9BKM7_QdGH8FokDqCicGHU9DFH75bFzTZ1vXWbdrg7KA3vv2v4geB821Z</recordid><startdate>20180715</startdate><enddate>20180715</enddate><creator>Quandt, David</creator><creator>Bläsing, Jürgen</creator><creator>Strittmatter, André</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5102-6911</orcidid></search><sort><creationdate>20180715</creationdate><title>Analysis of InAsSb/GaAs submonolayer stacks</title><author>Quandt, David ; Bläsing, Jürgen ; Strittmatter, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-c767163671121067ceb8effe3905516ae6038c3a2f0434b0b917470d53f4eff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>A1. Adsorption</topic><topic>A1. Characterization</topic><topic>A1. Photoluminescence</topic><topic>A1. X-ray fluorescence</topic><topic>A3. Metalorganic chemical vapor deposition</topic><topic>Adsorption</topic><topic>B2. Semiconducting III–V materials</topic><topic>Chemical vapor deposition</topic><topic>Current carriers</topic><topic>Fluorescence</topic><topic>Interface roughness</topic><topic>Luminescence</topic><topic>Position (location)</topic><topic>Semiconductors</topic><topic>X ray reflection</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quandt, David</creatorcontrib><creatorcontrib>Bläsing, Jürgen</creatorcontrib><creatorcontrib>Strittmatter, André</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quandt, David</au><au>Bläsing, Jürgen</au><au>Strittmatter, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of InAsSb/GaAs submonolayer stacks</atitle><jtitle>Journal of crystal growth</jtitle><date>2018-07-15</date><risdate>2018</risdate><volume>494</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>•A TESb flush leads to Sb incorporation into InAs/GaAs submonolayer stacks.•The Sb incorporation can be described by a Langmuir-type adsorption model.•The localization depth can be tuned with the GaAs spacer thickness.•Charge-carrier localization is only found below a critical thickness. InAsSb submonolayer (SML) islands separated by GaAs spacer layers show three-dimensional charge carrier localization centers of very high density. We advance the understanding of the submonolayer growth technique by combination of structural and optical data. Our analysis of the Sb incorporation by Langmuir-type adsorption model reveals involvement of a slow reaction component. In search for the governing mechanism for electronic coupling we monitored structural parameters such as interface roughness by X-ray reflection measurements. Interestingly, no significant structural changes with respect to the spacer thickness are found. Still, a critical upper thickness limit to observe electronic changes of 1.8–1.9 MLs GaAs is found. Below this critical thickness, three-dimensional charge carrier localization is present in the SML stack and the average localization depth can be controlled through spacer thickness.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2018.04.031</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5102-6911</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2018-07, Vol.494, p.1-7
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_journals_2090550011
source Elsevier ScienceDirect Journals
subjects A1. Adsorption
A1. Characterization
A1. Photoluminescence
A1. X-ray fluorescence
A3. Metalorganic chemical vapor deposition
Adsorption
B2. Semiconducting III–V materials
Chemical vapor deposition
Current carriers
Fluorescence
Interface roughness
Luminescence
Position (location)
Semiconductors
X ray reflection
X-rays
title Analysis of InAsSb/GaAs submonolayer stacks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20InAsSb/GaAs%20submonolayer%20stacks&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Quandt,%20David&rft.date=2018-07-15&rft.volume=494&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2018.04.031&rft_dat=%3Cproquest_cross%3E2090550011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090550011&rft_id=info:pmid/&rft_els_id=S0022024818302033&rfr_iscdi=true