Magnetization of nanomagnet assemblies: Effects of anisotropy and dipolar interactions

We investigate the effect of anisotropy and weak dipolar interactions on the magnetization of an assembly of nanoparticles with distributed magnetic moments, i.e., assembly of magnetic nanoparticles in the one-spin approximation, with textured or random anisotropy. The magnetization of a free partic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2005-08
Hauptverfasser: Kachkachi, H, Azeggagh, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kachkachi, H
Azeggagh, M
description We investigate the effect of anisotropy and weak dipolar interactions on the magnetization of an assembly of nanoparticles with distributed magnetic moments, i.e., assembly of magnetic nanoparticles in the one-spin approximation, with textured or random anisotropy. The magnetization of a free particle is obtained either by a numerical calculation of the partition function or analytically in the low and high field regimes, using perturbation theory and the steepest-descent approximation, respectively. The magnetization of an interacting assembly is computed analytically in the range of low and high field, and numerically using the Monte Carlo technique. Approximate analytical expressions for the assembly magnetization are provided which take account of the dipolar interactions, temperature, magnetic field, and anisotropy. The effect of anisotropy and dipolar interactions are discussed and the deviations from the Langevin law they entail are investigated, and illustrated for realistic assemblies with the lognormal moment distribution.
doi_str_mv 10.48550/arxiv.0502660
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2090529953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090529953</sourcerecordid><originalsourceid>FETCH-proquest_journals_20905299533</originalsourceid><addsrcrecordid>eNqNjLEKwjAURYMgWLSrc8C5-poYbV1FcXET1_LUVCI1qXmpqF9vFT_A6V7uOVzGhimMp5lSMEH_MPcxKBCzGXRYJKRMk2wqRI_FRBeAFsyFUjJi-y2erQ7mhcE4y13JLVp3_Y4cifT1UBlNC74qS30M9DHQGnLBu_rZ1hM_mdpV6LmxQXs8fn5owLolVqTjX_bZaL3aLTdJ7d2t0RSKi2u8bVEhIAcl8lxJ-Z_1BlclR78</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090529953</pqid></control><display><type>article</type><title>Magnetization of nanomagnet assemblies: Effects of anisotropy and dipolar interactions</title><source>Free E- Journals</source><creator>Kachkachi, H ; Azeggagh, M</creator><creatorcontrib>Kachkachi, H ; Azeggagh, M</creatorcontrib><description>We investigate the effect of anisotropy and weak dipolar interactions on the magnetization of an assembly of nanoparticles with distributed magnetic moments, i.e., assembly of magnetic nanoparticles in the one-spin approximation, with textured or random anisotropy. The magnetization of a free particle is obtained either by a numerical calculation of the partition function or analytically in the low and high field regimes, using perturbation theory and the steepest-descent approximation, respectively. The magnetization of an interacting assembly is computed analytically in the range of low and high field, and numerically using the Monte Carlo technique. Approximate analytical expressions for the assembly magnetization are provided which take account of the dipolar interactions, temperature, magnetic field, and anisotropy. The effect of anisotropy and dipolar interactions are discussed and the deviations from the Langevin law they entail are investigated, and illustrated for realistic assemblies with the lognormal moment distribution.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0502660</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anisotropy ; Approximation ; Assemblies ; Assembly ; Computer simulation ; Magnetic fields ; Magnetic moments ; Magnetization ; Mathematical analysis ; Moment distribution ; Nanoparticles ; Partitions (mathematics) ; Perturbation theory</subject><ispartof>arXiv.org, 2005-08</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/cond-mat/0502660.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Kachkachi, H</creatorcontrib><creatorcontrib>Azeggagh, M</creatorcontrib><title>Magnetization of nanomagnet assemblies: Effects of anisotropy and dipolar interactions</title><title>arXiv.org</title><description>We investigate the effect of anisotropy and weak dipolar interactions on the magnetization of an assembly of nanoparticles with distributed magnetic moments, i.e., assembly of magnetic nanoparticles in the one-spin approximation, with textured or random anisotropy. The magnetization of a free particle is obtained either by a numerical calculation of the partition function or analytically in the low and high field regimes, using perturbation theory and the steepest-descent approximation, respectively. The magnetization of an interacting assembly is computed analytically in the range of low and high field, and numerically using the Monte Carlo technique. Approximate analytical expressions for the assembly magnetization are provided which take account of the dipolar interactions, temperature, magnetic field, and anisotropy. The effect of anisotropy and dipolar interactions are discussed and the deviations from the Langevin law they entail are investigated, and illustrated for realistic assemblies with the lognormal moment distribution.</description><subject>Anisotropy</subject><subject>Approximation</subject><subject>Assemblies</subject><subject>Assembly</subject><subject>Computer simulation</subject><subject>Magnetic fields</subject><subject>Magnetic moments</subject><subject>Magnetization</subject><subject>Mathematical analysis</subject><subject>Moment distribution</subject><subject>Nanoparticles</subject><subject>Partitions (mathematics)</subject><subject>Perturbation theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjLEKwjAURYMgWLSrc8C5-poYbV1FcXET1_LUVCI1qXmpqF9vFT_A6V7uOVzGhimMp5lSMEH_MPcxKBCzGXRYJKRMk2wqRI_FRBeAFsyFUjJi-y2erQ7mhcE4y13JLVp3_Y4cifT1UBlNC74qS30M9DHQGnLBu_rZ1hM_mdpV6LmxQXs8fn5owLolVqTjX_bZaL3aLTdJ7d2t0RSKi2u8bVEhIAcl8lxJ-Z_1BlclR78</recordid><startdate>20050830</startdate><enddate>20050830</enddate><creator>Kachkachi, H</creator><creator>Azeggagh, M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20050830</creationdate><title>Magnetization of nanomagnet assemblies: Effects of anisotropy and dipolar interactions</title><author>Kachkachi, H ; Azeggagh, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20905299533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anisotropy</topic><topic>Approximation</topic><topic>Assemblies</topic><topic>Assembly</topic><topic>Computer simulation</topic><topic>Magnetic fields</topic><topic>Magnetic moments</topic><topic>Magnetization</topic><topic>Mathematical analysis</topic><topic>Moment distribution</topic><topic>Nanoparticles</topic><topic>Partitions (mathematics)</topic><topic>Perturbation theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Kachkachi, H</creatorcontrib><creatorcontrib>Azeggagh, M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kachkachi, H</au><au>Azeggagh, M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Magnetization of nanomagnet assemblies: Effects of anisotropy and dipolar interactions</atitle><jtitle>arXiv.org</jtitle><date>2005-08-30</date><risdate>2005</risdate><eissn>2331-8422</eissn><abstract>We investigate the effect of anisotropy and weak dipolar interactions on the magnetization of an assembly of nanoparticles with distributed magnetic moments, i.e., assembly of magnetic nanoparticles in the one-spin approximation, with textured or random anisotropy. The magnetization of a free particle is obtained either by a numerical calculation of the partition function or analytically in the low and high field regimes, using perturbation theory and the steepest-descent approximation, respectively. The magnetization of an interacting assembly is computed analytically in the range of low and high field, and numerically using the Monte Carlo technique. Approximate analytical expressions for the assembly magnetization are provided which take account of the dipolar interactions, temperature, magnetic field, and anisotropy. The effect of anisotropy and dipolar interactions are discussed and the deviations from the Langevin law they entail are investigated, and illustrated for realistic assemblies with the lognormal moment distribution.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0502660</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2005-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2090529953
source Free E- Journals
subjects Anisotropy
Approximation
Assemblies
Assembly
Computer simulation
Magnetic fields
Magnetic moments
Magnetization
Mathematical analysis
Moment distribution
Nanoparticles
Partitions (mathematics)
Perturbation theory
title Magnetization of nanomagnet assemblies: Effects of anisotropy and dipolar interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Magnetization%20of%20nanomagnet%20assemblies:%20Effects%20of%20anisotropy%20and%20dipolar%20interactions&rft.jtitle=arXiv.org&rft.au=Kachkachi,%20H&rft.date=2005-08-30&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0502660&rft_dat=%3Cproquest%3E2090529953%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090529953&rft_id=info:pmid/&rfr_iscdi=true