Estimating the size of an object captured with error

In many applications we are faced with the problem of estimating object dimensions from a noisy image. Some devices like a fluorescent microscope, X-ray or ultrasound machines, etc., produce imperfect images. Image noise comes from a variety of sources. It can be produced by the physical processes o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Central European journal of operations research 2018-09, Vol.26 (3), p.771-781
Hauptverfasser: Hamedović, Safet, Benšić, Mirta, Sabo, Kristian, Taler, Petar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 781
container_issue 3
container_start_page 771
container_title Central European journal of operations research
container_volume 26
creator Hamedović, Safet
Benšić, Mirta
Sabo, Kristian
Taler, Petar
description In many applications we are faced with the problem of estimating object dimensions from a noisy image. Some devices like a fluorescent microscope, X-ray or ultrasound machines, etc., produce imperfect images. Image noise comes from a variety of sources. It can be produced by the physical processes of imaging, or may be caused by the presence of some unwanted structures (e.g. soft tissue captured in images of bones). In the proposed models we suppose that the data are drawn from uniform distribution on the object of interest, but contaminated by an additive error. Here we use two one-dimensional parametric models to construct confidence intervals and statistical tests pertaining to the object size and suggest the possibility of application in two-dimensional problems. Normal and Laplace distributions are used as error distributions. Finally, we illustrate ability of the R-programs we created for these problems on a real-world example.
doi_str_mv 10.1007/s10100-017-0504-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2090528888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A706499355</galeid><sourcerecordid>A706499355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-c706c21b793daad5edfcb3b2366749ab2d59fd438ea640c06d99cb0a213436d53</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhosouK7-AG8Fr3adfDTdHBfxCwQvCt5CmqTdLLvtmkkR_fVmqbAKmkBmCO8zM8mbZecEZgSgukICKRZAqgJK4IU8yCZEEFZIUs0PU85ZWVAuXo-zE8QVACUSxCTjNxj9RkfftXlcuhz9p8v7Jtdd3tcrZ2Ju9DYOwdn83cdl7kLow2l21Og1urPvOM1ebm-er--Lx6e7h-vFY2H4vIyFqUAYSupKMqu1LZ1tTM1qyoSouNQ1taVsLGdzpwUHA8JKaWrQlDDOhC3ZNLsY625D_zY4jGrVD6FLLRUFCSWdp7VXtXrtlO-aPgZtNh6NWqQJuJSs3NWa_aFK27qNN33nGp_ufwGXP4B6QN85TAf6dhmx1QPibzkZ5Sb0iME1ahvSx4YPRUDtLFKjRSpZpHYWKZkYOjKYtF3rwv59_0NfxcmQuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090528888</pqid></control><display><type>article</type><title>Estimating the size of an object captured with error</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Hamedović, Safet ; Benšić, Mirta ; Sabo, Kristian ; Taler, Petar</creator><creatorcontrib>Hamedović, Safet ; Benšić, Mirta ; Sabo, Kristian ; Taler, Petar</creatorcontrib><description>In many applications we are faced with the problem of estimating object dimensions from a noisy image. Some devices like a fluorescent microscope, X-ray or ultrasound machines, etc., produce imperfect images. Image noise comes from a variety of sources. It can be produced by the physical processes of imaging, or may be caused by the presence of some unwanted structures (e.g. soft tissue captured in images of bones). In the proposed models we suppose that the data are drawn from uniform distribution on the object of interest, but contaminated by an additive error. Here we use two one-dimensional parametric models to construct confidence intervals and statistical tests pertaining to the object size and suggest the possibility of application in two-dimensional problems. Normal and Laplace distributions are used as error distributions. Finally, we illustrate ability of the R-programs we created for these problems on a real-world example.</description><identifier>ISSN: 1435-246X</identifier><identifier>EISSN: 1613-9178</identifier><identifier>DOI: 10.1007/s10100-017-0504-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bones ; Business and Management ; Confidence intervals ; Errors ; Estimation ; Fluorescence ; Image processing ; Methods ; Normal distribution ; Operations research ; Operations Research/Decision Theory ; Original Paper ; Statistical analysis ; Statistical tests</subject><ispartof>Central European journal of operations research, 2018-09, Vol.26 (3), p.771-781</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Central European Journal of Operations Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-c706c21b793daad5edfcb3b2366749ab2d59fd438ea640c06d99cb0a213436d53</citedby><cites>FETCH-LOGICAL-c485t-c706c21b793daad5edfcb3b2366749ab2d59fd438ea640c06d99cb0a213436d53</cites><orcidid>0000-0002-1787-3161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10100-017-0504-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10100-017-0504-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Hamedović, Safet</creatorcontrib><creatorcontrib>Benšić, Mirta</creatorcontrib><creatorcontrib>Sabo, Kristian</creatorcontrib><creatorcontrib>Taler, Petar</creatorcontrib><title>Estimating the size of an object captured with error</title><title>Central European journal of operations research</title><addtitle>Cent Eur J Oper Res</addtitle><description>In many applications we are faced with the problem of estimating object dimensions from a noisy image. Some devices like a fluorescent microscope, X-ray or ultrasound machines, etc., produce imperfect images. Image noise comes from a variety of sources. It can be produced by the physical processes of imaging, or may be caused by the presence of some unwanted structures (e.g. soft tissue captured in images of bones). In the proposed models we suppose that the data are drawn from uniform distribution on the object of interest, but contaminated by an additive error. Here we use two one-dimensional parametric models to construct confidence intervals and statistical tests pertaining to the object size and suggest the possibility of application in two-dimensional problems. Normal and Laplace distributions are used as error distributions. Finally, we illustrate ability of the R-programs we created for these problems on a real-world example.</description><subject>Bones</subject><subject>Business and Management</subject><subject>Confidence intervals</subject><subject>Errors</subject><subject>Estimation</subject><subject>Fluorescence</subject><subject>Image processing</subject><subject>Methods</subject><subject>Normal distribution</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><issn>1435-246X</issn><issn>1613-9178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1LxDAQhosouK7-AG8Fr3adfDTdHBfxCwQvCt5CmqTdLLvtmkkR_fVmqbAKmkBmCO8zM8mbZecEZgSgukICKRZAqgJK4IU8yCZEEFZIUs0PU85ZWVAuXo-zE8QVACUSxCTjNxj9RkfftXlcuhz9p8v7Jtdd3tcrZ2Ju9DYOwdn83cdl7kLow2l21Og1urPvOM1ebm-er--Lx6e7h-vFY2H4vIyFqUAYSupKMqu1LZ1tTM1qyoSouNQ1taVsLGdzpwUHA8JKaWrQlDDOhC3ZNLsY625D_zY4jGrVD6FLLRUFCSWdp7VXtXrtlO-aPgZtNh6NWqQJuJSs3NWa_aFK27qNN33nGp_ufwGXP4B6QN85TAf6dhmx1QPibzkZ5Sb0iME1ahvSx4YPRUDtLFKjRSpZpHYWKZkYOjKYtF3rwv59_0NfxcmQuQ</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Hamedović, Safet</creator><creator>Benšić, Mirta</creator><creator>Sabo, Kristian</creator><creator>Taler, Petar</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1787-3161</orcidid></search><sort><creationdate>20180901</creationdate><title>Estimating the size of an object captured with error</title><author>Hamedović, Safet ; Benšić, Mirta ; Sabo, Kristian ; Taler, Petar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-c706c21b793daad5edfcb3b2366749ab2d59fd438ea640c06d99cb0a213436d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bones</topic><topic>Business and Management</topic><topic>Confidence intervals</topic><topic>Errors</topic><topic>Estimation</topic><topic>Fluorescence</topic><topic>Image processing</topic><topic>Methods</topic><topic>Normal distribution</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamedović, Safet</creatorcontrib><creatorcontrib>Benšić, Mirta</creatorcontrib><creatorcontrib>Sabo, Kristian</creatorcontrib><creatorcontrib>Taler, Petar</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Central European journal of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamedović, Safet</au><au>Benšić, Mirta</au><au>Sabo, Kristian</au><au>Taler, Petar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the size of an object captured with error</atitle><jtitle>Central European journal of operations research</jtitle><stitle>Cent Eur J Oper Res</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>26</volume><issue>3</issue><spage>771</spage><epage>781</epage><pages>771-781</pages><issn>1435-246X</issn><eissn>1613-9178</eissn><abstract>In many applications we are faced with the problem of estimating object dimensions from a noisy image. Some devices like a fluorescent microscope, X-ray or ultrasound machines, etc., produce imperfect images. Image noise comes from a variety of sources. It can be produced by the physical processes of imaging, or may be caused by the presence of some unwanted structures (e.g. soft tissue captured in images of bones). In the proposed models we suppose that the data are drawn from uniform distribution on the object of interest, but contaminated by an additive error. Here we use two one-dimensional parametric models to construct confidence intervals and statistical tests pertaining to the object size and suggest the possibility of application in two-dimensional problems. Normal and Laplace distributions are used as error distributions. Finally, we illustrate ability of the R-programs we created for these problems on a real-world example.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10100-017-0504-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1787-3161</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1435-246X
ispartof Central European journal of operations research, 2018-09, Vol.26 (3), p.771-781
issn 1435-246X
1613-9178
language eng
recordid cdi_proquest_journals_2090528888
source Business Source Complete; Springer Nature - Complete Springer Journals
subjects Bones
Business and Management
Confidence intervals
Errors
Estimation
Fluorescence
Image processing
Methods
Normal distribution
Operations research
Operations Research/Decision Theory
Original Paper
Statistical analysis
Statistical tests
title Estimating the size of an object captured with error
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A43%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20size%20of%20an%20object%20captured%20with%20error&rft.jtitle=Central%20European%20journal%20of%20operations%20research&rft.au=Hamedovi%C4%87,%20Safet&rft.date=2018-09-01&rft.volume=26&rft.issue=3&rft.spage=771&rft.epage=781&rft.pages=771-781&rft.issn=1435-246X&rft.eissn=1613-9178&rft_id=info:doi/10.1007/s10100-017-0504-9&rft_dat=%3Cgale_proqu%3EA706499355%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090528888&rft_id=info:pmid/&rft_galeid=A706499355&rfr_iscdi=true