Modelling tubular shapes in the inner mitochondrial membrane

The inner mitochondrial membrane has been shown to have a novel structure that contains tubular components whose radii are on the order of 10 nm as well as comparatively flat regions. The structural organization of mitochondria is important to understanding their functionality. We present a model th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2004-12
Hauptverfasser: Ponnuswamy, A, Nulton, J, Mahaffy, J M, Salamon, P, Frey, T G, Baljon, A R C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ponnuswamy, A
Nulton, J
Mahaffy, J M
Salamon, P
Frey, T G
Baljon, A R C
description The inner mitochondrial membrane has been shown to have a novel structure that contains tubular components whose radii are on the order of 10 nm as well as comparatively flat regions. The structural organization of mitochondria is important to understanding their functionality. We present a model that can account, thermodynamically, for the observed size of the tubules. The model contains two lipid constituents with different shapes. They are allowed to distribute in such a way that the composition differs on the two sides of the tubular membrane. Our calculations make two predictions: (1) there is a pressure difference of 0.2 atmospheres across the inner membrane as a necessary consequence of the experimentally observed tubule radius of 10 nm. and (2) migration of differently shaped lipids causes concentration variations between the two sides of the tubular membrane on the order of 7 percent.
doi_str_mv 10.48550/arxiv.0412183
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2090506171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090506171</sourcerecordid><originalsourceid>FETCH-proquest_journals_20905061713</originalsourceid><addsrcrecordid>eNqNyrsOgjAYQOHGxESirM5NnNG_LQVM3IzGxc2dFKlSUlrsxfj4MvgATt9wDkJrAtu84hx2wn3Uews5oaRiM5RQxkhW5ZQuUOp9DwC0KCnnLEGHq22l1so8cYhN1MJh34lReqwMDp2cMNLhQQV776xpnRIaD3JonDByheYPob1Mfy7R5ny6HS_Z6OwrSh_q3kZnplRT2AOHgpSE_Xd9AaiaPXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090506171</pqid></control><display><type>article</type><title>Modelling tubular shapes in the inner mitochondrial membrane</title><source>Freely Accessible Journals</source><creator>Ponnuswamy, A ; Nulton, J ; Mahaffy, J M ; Salamon, P ; Frey, T G ; Baljon, A R C</creator><creatorcontrib>Ponnuswamy, A ; Nulton, J ; Mahaffy, J M ; Salamon, P ; Frey, T G ; Baljon, A R C</creatorcontrib><description>The inner mitochondrial membrane has been shown to have a novel structure that contains tubular components whose radii are on the order of 10 nm as well as comparatively flat regions. The structural organization of mitochondria is important to understanding their functionality. We present a model that can account, thermodynamically, for the observed size of the tubules. The model contains two lipid constituents with different shapes. They are allowed to distribute in such a way that the composition differs on the two sides of the tubular membrane. Our calculations make two predictions: (1) there is a pressure difference of 0.2 atmospheres across the inner membrane as a necessary consequence of the experimentally observed tubule radius of 10 nm. and (2) migration of differently shaped lipids causes concentration variations between the two sides of the tubular membrane on the order of 7 percent.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0412183</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atmospheric pressure ; Lipids ; Migration ; Mitochondria</subject><ispartof>arXiv.org, 2004-12</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/cond-mat/0412183.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Ponnuswamy, A</creatorcontrib><creatorcontrib>Nulton, J</creatorcontrib><creatorcontrib>Mahaffy, J M</creatorcontrib><creatorcontrib>Salamon, P</creatorcontrib><creatorcontrib>Frey, T G</creatorcontrib><creatorcontrib>Baljon, A R C</creatorcontrib><title>Modelling tubular shapes in the inner mitochondrial membrane</title><title>arXiv.org</title><description>The inner mitochondrial membrane has been shown to have a novel structure that contains tubular components whose radii are on the order of 10 nm as well as comparatively flat regions. The structural organization of mitochondria is important to understanding their functionality. We present a model that can account, thermodynamically, for the observed size of the tubules. The model contains two lipid constituents with different shapes. They are allowed to distribute in such a way that the composition differs on the two sides of the tubular membrane. Our calculations make two predictions: (1) there is a pressure difference of 0.2 atmospheres across the inner membrane as a necessary consequence of the experimentally observed tubule radius of 10 nm. and (2) migration of differently shaped lipids causes concentration variations between the two sides of the tubular membrane on the order of 7 percent.</description><subject>Atmospheric pressure</subject><subject>Lipids</subject><subject>Migration</subject><subject>Mitochondria</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrsOgjAYQOHGxESirM5NnNG_LQVM3IzGxc2dFKlSUlrsxfj4MvgATt9wDkJrAtu84hx2wn3Uews5oaRiM5RQxkhW5ZQuUOp9DwC0KCnnLEGHq22l1so8cYhN1MJh34lReqwMDp2cMNLhQQV776xpnRIaD3JonDByheYPob1Mfy7R5ny6HS_Z6OwrSh_q3kZnplRT2AOHgpSE_Xd9AaiaPXo</recordid><startdate>20041208</startdate><enddate>20041208</enddate><creator>Ponnuswamy, A</creator><creator>Nulton, J</creator><creator>Mahaffy, J M</creator><creator>Salamon, P</creator><creator>Frey, T G</creator><creator>Baljon, A R C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20041208</creationdate><title>Modelling tubular shapes in the inner mitochondrial membrane</title><author>Ponnuswamy, A ; Nulton, J ; Mahaffy, J M ; Salamon, P ; Frey, T G ; Baljon, A R C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20905061713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Atmospheric pressure</topic><topic>Lipids</topic><topic>Migration</topic><topic>Mitochondria</topic><toplevel>online_resources</toplevel><creatorcontrib>Ponnuswamy, A</creatorcontrib><creatorcontrib>Nulton, J</creatorcontrib><creatorcontrib>Mahaffy, J M</creatorcontrib><creatorcontrib>Salamon, P</creatorcontrib><creatorcontrib>Frey, T G</creatorcontrib><creatorcontrib>Baljon, A R C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ponnuswamy, A</au><au>Nulton, J</au><au>Mahaffy, J M</au><au>Salamon, P</au><au>Frey, T G</au><au>Baljon, A R C</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Modelling tubular shapes in the inner mitochondrial membrane</atitle><jtitle>arXiv.org</jtitle><date>2004-12-08</date><risdate>2004</risdate><eissn>2331-8422</eissn><abstract>The inner mitochondrial membrane has been shown to have a novel structure that contains tubular components whose radii are on the order of 10 nm as well as comparatively flat regions. The structural organization of mitochondria is important to understanding their functionality. We present a model that can account, thermodynamically, for the observed size of the tubules. The model contains two lipid constituents with different shapes. They are allowed to distribute in such a way that the composition differs on the two sides of the tubular membrane. Our calculations make two predictions: (1) there is a pressure difference of 0.2 atmospheres across the inner membrane as a necessary consequence of the experimentally observed tubule radius of 10 nm. and (2) migration of differently shaped lipids causes concentration variations between the two sides of the tubular membrane on the order of 7 percent.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0412183</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2004-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2090506171
source Freely Accessible Journals
subjects Atmospheric pressure
Lipids
Migration
Mitochondria
title Modelling tubular shapes in the inner mitochondrial membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Modelling%20tubular%20shapes%20in%20the%20inner%20mitochondrial%20membrane&rft.jtitle=arXiv.org&rft.au=Ponnuswamy,%20A&rft.date=2004-12-08&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0412183&rft_dat=%3Cproquest%3E2090506171%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090506171&rft_id=info:pmid/&rfr_iscdi=true