Effect of calcination temperature on structure and photocatalytic activity under UV and visible light of nanosheets from low-cost magnetic leucoxene mineral
•This synthesis method provides a simple route to fabricate 2D nanostructured material from low-cost natural mineral.•More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01...
Gespeichert in:
Veröffentlicht in: | Photonics and nanostructures 2017-07, Vol.25, p.38-45 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45 |
---|---|
container_issue | |
container_start_page | 38 |
container_title | Photonics and nanostructures |
container_volume | 25 |
creator | Charerntanom, Wissanu Pecharapa, Wisanu Pavasupree, Suttipan Pavasupree, Sorapong |
description | •This synthesis method provides a simple route to fabricate 2D nanostructured material from low-cost natural mineral.•More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01 and P-25).
This research has experimentally synthesized the nanosheets from the naturally-mineral magnetic leucoxene under the hydrothermal synthesis condition of 105°C for 24h. Magnetic leucoxene was utilized as the starting material due to its high TiO2 content (70–80%) and inexpensiveness. The characterization of the synthesized nanosheets was subsequently carried out: the crystalline structure, the chemical composition, the shape, the size and the specific surface area, by the X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) specific surface area analysis. The analysis results indicated that the starting magnetic leucoxene is of rutile phase while the synthesized nanosheets are of titanate structure (H2TixO2x+1). After calcination at the temperature range of 300 and 400°C, the calcined samples demonstrated TiO2 (B). At 500 and 600°C, the calcined nanosheets revealed a bi-crystalline mixture consisting of TiO2 (B) and anatase TiO2. At 700–1000°C, the crystalline structure shows anatase and rutile phase. At 1100°C, the prepared samples consisted of a mixture of anatase, rutile phase of TiO2, and Fe2O3 phase. The synthesized product also exhibited the flower-like morphology with 2–5μm in diameter, and the nanosheets structure was slightly curved, with 100nm to 2μm in width and 1–3nm in thickness. At 100–200°C showed sheets-like structure. At 300–1100°C, the calcined nanosheets became unstable and began to decompose and transform into nanoparticles. The increasing size of nanoparticle decreased the specific surface area of the nanosheets, caused by increasing calcination temperature. Furthermore, the BET specific surface area of the nanosheets was approximately 279.8m2/g. More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01 and P-25). |
doi_str_mv | 10.1016/j.photonics.2017.04.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2090496797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1569441017300573</els_id><sourcerecordid>2090496797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-6e5b06daee8f2a26849dcd4de53cea3b50add520da9df047dcbad413ecf4c9043</originalsourceid><addsrcrecordid>eNqFUU1P3DAQjapWKqX9DbXEOWGcOMnmiBCllVbiAlwt73jMepXYi-1s2f_Cj8W7i7hymnnS-9DMK4rfHCoOvLvcVNu1T95ZjFUNvK9AVAD9l-KMt91QClEPXz92Dt-LHzFuAJqm491Z8XpjDGFi3jBUI1qnkvWOJZq2FFSaA7EMYwozHoFymh3zUCU17pNFpjDZnU17NjtNgT08Hkk7G-1qJDbap_XR3inn45ooRWaCn9jo_5foY2KTenJ0MBppRv9CjthkXU4ffxbfjBoj_Xqf58XDn5v767_l8u723_XVssRmAansqF1BpxXRwtSq7hZi0KiFprZBUs2qBaV1W4NWgzYgeo0rpQVvCI3AAURzXlycfLfBP88Uk9z4ObgcKWvIhKHrhz6z-hMLg48xkJHbYCcV9pKDPFQhN_KjCnmoQoKQuYqsvDopKR-xsxRkREsOSduQny-1t596vAGN-JzX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090496797</pqid></control><display><type>article</type><title>Effect of calcination temperature on structure and photocatalytic activity under UV and visible light of nanosheets from low-cost magnetic leucoxene mineral</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Charerntanom, Wissanu ; Pecharapa, Wisanu ; Pavasupree, Suttipan ; Pavasupree, Sorapong</creator><creatorcontrib>Charerntanom, Wissanu ; Pecharapa, Wisanu ; Pavasupree, Suttipan ; Pavasupree, Sorapong</creatorcontrib><description>•This synthesis method provides a simple route to fabricate 2D nanostructured material from low-cost natural mineral.•More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01 and P-25).
This research has experimentally synthesized the nanosheets from the naturally-mineral magnetic leucoxene under the hydrothermal synthesis condition of 105°C for 24h. Magnetic leucoxene was utilized as the starting material due to its high TiO2 content (70–80%) and inexpensiveness. The characterization of the synthesized nanosheets was subsequently carried out: the crystalline structure, the chemical composition, the shape, the size and the specific surface area, by the X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) specific surface area analysis. The analysis results indicated that the starting magnetic leucoxene is of rutile phase while the synthesized nanosheets are of titanate structure (H2TixO2x+1). After calcination at the temperature range of 300 and 400°C, the calcined samples demonstrated TiO2 (B). At 500 and 600°C, the calcined nanosheets revealed a bi-crystalline mixture consisting of TiO2 (B) and anatase TiO2. At 700–1000°C, the crystalline structure shows anatase and rutile phase. At 1100°C, the prepared samples consisted of a mixture of anatase, rutile phase of TiO2, and Fe2O3 phase. The synthesized product also exhibited the flower-like morphology with 2–5μm in diameter, and the nanosheets structure was slightly curved, with 100nm to 2μm in width and 1–3nm in thickness. At 100–200°C showed sheets-like structure. At 300–1100°C, the calcined nanosheets became unstable and began to decompose and transform into nanoparticles. The increasing size of nanoparticle decreased the specific surface area of the nanosheets, caused by increasing calcination temperature. Furthermore, the BET specific surface area of the nanosheets was approximately 279.8m2/g. More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01 and P-25).</description><identifier>ISSN: 1569-4410</identifier><identifier>EISSN: 1569-4429</identifier><identifier>DOI: 10.1016/j.photonics.2017.04.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anatase ; Catalytic activity ; Chemical composition ; Chemical synthesis ; Crystal structure ; Crystallinity ; Electromagnetics ; Hydrothermal ; Magnetic leucoxene mineral ; Morphology ; Nanoparticles ; Nanosheets ; Organic chemistry ; Photocatalysis ; Photonics ; Roasting ; Rutile ; Scanning electron microscopy ; Specific surface ; Surface area ; TiO2 ; Titanate ; Titanium ; Titanium dioxide ; Transmission electron microscopy ; Ultraviolet radiation ; X-ray diffraction ; X-ray fluorescence</subject><ispartof>Photonics and nanostructures, 2017-07, Vol.25, p.38-45</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jul 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-6e5b06daee8f2a26849dcd4de53cea3b50add520da9df047dcbad413ecf4c9043</citedby><cites>FETCH-LOGICAL-c380t-6e5b06daee8f2a26849dcd4de53cea3b50add520da9df047dcbad413ecf4c9043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.photonics.2017.04.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Charerntanom, Wissanu</creatorcontrib><creatorcontrib>Pecharapa, Wisanu</creatorcontrib><creatorcontrib>Pavasupree, Suttipan</creatorcontrib><creatorcontrib>Pavasupree, Sorapong</creatorcontrib><title>Effect of calcination temperature on structure and photocatalytic activity under UV and visible light of nanosheets from low-cost magnetic leucoxene mineral</title><title>Photonics and nanostructures</title><description>•This synthesis method provides a simple route to fabricate 2D nanostructured material from low-cost natural mineral.•More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01 and P-25).
This research has experimentally synthesized the nanosheets from the naturally-mineral magnetic leucoxene under the hydrothermal synthesis condition of 105°C for 24h. Magnetic leucoxene was utilized as the starting material due to its high TiO2 content (70–80%) and inexpensiveness. The characterization of the synthesized nanosheets was subsequently carried out: the crystalline structure, the chemical composition, the shape, the size and the specific surface area, by the X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) specific surface area analysis. The analysis results indicated that the starting magnetic leucoxene is of rutile phase while the synthesized nanosheets are of titanate structure (H2TixO2x+1). After calcination at the temperature range of 300 and 400°C, the calcined samples demonstrated TiO2 (B). At 500 and 600°C, the calcined nanosheets revealed a bi-crystalline mixture consisting of TiO2 (B) and anatase TiO2. At 700–1000°C, the crystalline structure shows anatase and rutile phase. At 1100°C, the prepared samples consisted of a mixture of anatase, rutile phase of TiO2, and Fe2O3 phase. The synthesized product also exhibited the flower-like morphology with 2–5μm in diameter, and the nanosheets structure was slightly curved, with 100nm to 2μm in width and 1–3nm in thickness. At 100–200°C showed sheets-like structure. At 300–1100°C, the calcined nanosheets became unstable and began to decompose and transform into nanoparticles. The increasing size of nanoparticle decreased the specific surface area of the nanosheets, caused by increasing calcination temperature. Furthermore, the BET specific surface area of the nanosheets was approximately 279.8m2/g. More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01 and P-25).</description><subject>Anatase</subject><subject>Catalytic activity</subject><subject>Chemical composition</subject><subject>Chemical synthesis</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Electromagnetics</subject><subject>Hydrothermal</subject><subject>Magnetic leucoxene mineral</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nanosheets</subject><subject>Organic chemistry</subject><subject>Photocatalysis</subject><subject>Photonics</subject><subject>Roasting</subject><subject>Rutile</subject><subject>Scanning electron microscopy</subject><subject>Specific surface</subject><subject>Surface area</subject><subject>TiO2</subject><subject>Titanate</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Transmission electron microscopy</subject><subject>Ultraviolet radiation</subject><subject>X-ray diffraction</subject><subject>X-ray fluorescence</subject><issn>1569-4410</issn><issn>1569-4429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUU1P3DAQjapWKqX9DbXEOWGcOMnmiBCllVbiAlwt73jMepXYi-1s2f_Cj8W7i7hymnnS-9DMK4rfHCoOvLvcVNu1T95ZjFUNvK9AVAD9l-KMt91QClEPXz92Dt-LHzFuAJqm491Z8XpjDGFi3jBUI1qnkvWOJZq2FFSaA7EMYwozHoFymh3zUCU17pNFpjDZnU17NjtNgT08Hkk7G-1qJDbap_XR3inn45ooRWaCn9jo_5foY2KTenJ0MBppRv9CjthkXU4ffxbfjBoj_Xqf58XDn5v767_l8u723_XVssRmAansqF1BpxXRwtSq7hZi0KiFprZBUs2qBaV1W4NWgzYgeo0rpQVvCI3AAURzXlycfLfBP88Uk9z4ObgcKWvIhKHrhz6z-hMLg48xkJHbYCcV9pKDPFQhN_KjCnmoQoKQuYqsvDopKR-xsxRkREsOSduQny-1t596vAGN-JzX</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Charerntanom, Wissanu</creator><creator>Pecharapa, Wisanu</creator><creator>Pavasupree, Suttipan</creator><creator>Pavasupree, Sorapong</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170701</creationdate><title>Effect of calcination temperature on structure and photocatalytic activity under UV and visible light of nanosheets from low-cost magnetic leucoxene mineral</title><author>Charerntanom, Wissanu ; Pecharapa, Wisanu ; Pavasupree, Suttipan ; Pavasupree, Sorapong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-6e5b06daee8f2a26849dcd4de53cea3b50add520da9df047dcbad413ecf4c9043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anatase</topic><topic>Catalytic activity</topic><topic>Chemical composition</topic><topic>Chemical synthesis</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Electromagnetics</topic><topic>Hydrothermal</topic><topic>Magnetic leucoxene mineral</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nanosheets</topic><topic>Organic chemistry</topic><topic>Photocatalysis</topic><topic>Photonics</topic><topic>Roasting</topic><topic>Rutile</topic><topic>Scanning electron microscopy</topic><topic>Specific surface</topic><topic>Surface area</topic><topic>TiO2</topic><topic>Titanate</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Transmission electron microscopy</topic><topic>Ultraviolet radiation</topic><topic>X-ray diffraction</topic><topic>X-ray fluorescence</topic><toplevel>online_resources</toplevel><creatorcontrib>Charerntanom, Wissanu</creatorcontrib><creatorcontrib>Pecharapa, Wisanu</creatorcontrib><creatorcontrib>Pavasupree, Suttipan</creatorcontrib><creatorcontrib>Pavasupree, Sorapong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Photonics and nanostructures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charerntanom, Wissanu</au><au>Pecharapa, Wisanu</au><au>Pavasupree, Suttipan</au><au>Pavasupree, Sorapong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of calcination temperature on structure and photocatalytic activity under UV and visible light of nanosheets from low-cost magnetic leucoxene mineral</atitle><jtitle>Photonics and nanostructures</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>25</volume><spage>38</spage><epage>45</epage><pages>38-45</pages><issn>1569-4410</issn><eissn>1569-4429</eissn><abstract>•This synthesis method provides a simple route to fabricate 2D nanostructured material from low-cost natural mineral.•More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01 and P-25).
This research has experimentally synthesized the nanosheets from the naturally-mineral magnetic leucoxene under the hydrothermal synthesis condition of 105°C for 24h. Magnetic leucoxene was utilized as the starting material due to its high TiO2 content (70–80%) and inexpensiveness. The characterization of the synthesized nanosheets was subsequently carried out: the crystalline structure, the chemical composition, the shape, the size and the specific surface area, by the X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) specific surface area analysis. The analysis results indicated that the starting magnetic leucoxene is of rutile phase while the synthesized nanosheets are of titanate structure (H2TixO2x+1). After calcination at the temperature range of 300 and 400°C, the calcined samples demonstrated TiO2 (B). At 500 and 600°C, the calcined nanosheets revealed a bi-crystalline mixture consisting of TiO2 (B) and anatase TiO2. At 700–1000°C, the crystalline structure shows anatase and rutile phase. At 1100°C, the prepared samples consisted of a mixture of anatase, rutile phase of TiO2, and Fe2O3 phase. The synthesized product also exhibited the flower-like morphology with 2–5μm in diameter, and the nanosheets structure was slightly curved, with 100nm to 2μm in width and 1–3nm in thickness. At 100–200°C showed sheets-like structure. At 300–1100°C, the calcined nanosheets became unstable and began to decompose and transform into nanoparticles. The increasing size of nanoparticle decreased the specific surface area of the nanosheets, caused by increasing calcination temperature. Furthermore, the BET specific surface area of the nanosheets was approximately 279.8m2/g. More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01 and P-25).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.photonics.2017.04.007</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-4410 |
ispartof | Photonics and nanostructures, 2017-07, Vol.25, p.38-45 |
issn | 1569-4410 1569-4429 |
language | eng |
recordid | cdi_proquest_journals_2090496797 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Anatase Catalytic activity Chemical composition Chemical synthesis Crystal structure Crystallinity Electromagnetics Hydrothermal Magnetic leucoxene mineral Morphology Nanoparticles Nanosheets Organic chemistry Photocatalysis Photonics Roasting Rutile Scanning electron microscopy Specific surface Surface area TiO2 Titanate Titanium Titanium dioxide Transmission electron microscopy Ultraviolet radiation X-ray diffraction X-ray fluorescence |
title | Effect of calcination temperature on structure and photocatalytic activity under UV and visible light of nanosheets from low-cost magnetic leucoxene mineral |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A30%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20calcination%20temperature%20on%20structure%20and%20photocatalytic%20activity%20under%20UV%20and%20visible%20light%20of%20nanosheets%20from%20low-cost%20magnetic%20leucoxene%20mineral&rft.jtitle=Photonics%20and%20nanostructures&rft.au=Charerntanom,%20Wissanu&rft.date=2017-07-01&rft.volume=25&rft.spage=38&rft.epage=45&rft.pages=38-45&rft.issn=1569-4410&rft.eissn=1569-4429&rft_id=info:doi/10.1016/j.photonics.2017.04.007&rft_dat=%3Cproquest_cross%3E2090496797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090496797&rft_id=info:pmid/&rft_els_id=S1569441017300573&rfr_iscdi=true |