Effect of calcination temperature on structure and photocatalytic activity under UV and visible light of nanosheets from low-cost magnetic leucoxene mineral

•This synthesis method provides a simple route to fabricate 2D nanostructured material from low-cost natural mineral.•More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photonics and nanostructures 2017-07, Vol.25, p.38-45
Hauptverfasser: Charerntanom, Wissanu, Pecharapa, Wisanu, Pavasupree, Suttipan, Pavasupree, Sorapong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue
container_start_page 38
container_title Photonics and nanostructures
container_volume 25
creator Charerntanom, Wissanu
Pecharapa, Wisanu
Pavasupree, Suttipan
Pavasupree, Sorapong
description •This synthesis method provides a simple route to fabricate 2D nanostructured material from low-cost natural mineral.•More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01 and P-25). This research has experimentally synthesized the nanosheets from the naturally-mineral magnetic leucoxene under the hydrothermal synthesis condition of 105°C for 24h. Magnetic leucoxene was utilized as the starting material due to its high TiO2 content (70–80%) and inexpensiveness. The characterization of the synthesized nanosheets was subsequently carried out: the crystalline structure, the chemical composition, the shape, the size and the specific surface area, by the X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) specific surface area analysis. The analysis results indicated that the starting magnetic leucoxene is of rutile phase while the synthesized nanosheets are of titanate structure (H2TixO2x+1). After calcination at the temperature range of 300 and 400°C, the calcined samples demonstrated TiO2 (B). At 500 and 600°C, the calcined nanosheets revealed a bi-crystalline mixture consisting of TiO2 (B) and anatase TiO2. At 700–1000°C, the crystalline structure shows anatase and rutile phase. At 1100°C, the prepared samples consisted of a mixture of anatase, rutile phase of TiO2, and Fe2O3 phase. The synthesized product also exhibited the flower-like morphology with 2–5μm in diameter, and the nanosheets structure was slightly curved, with 100nm to 2μm in width and 1–3nm in thickness. At 100–200°C showed sheets-like structure. At 300–1100°C, the calcined nanosheets became unstable and began to decompose and transform into nanoparticles. The increasing size of nanoparticle decreased the specific surface area of the nanosheets, caused by increasing calcination temperature. Furthermore, the BET specific surface area of the nanosheets was approximately 279.8m2/g. More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01 and P-25).
doi_str_mv 10.1016/j.photonics.2017.04.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2090496797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1569441017300573</els_id><sourcerecordid>2090496797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-6e5b06daee8f2a26849dcd4de53cea3b50add520da9df047dcbad413ecf4c9043</originalsourceid><addsrcrecordid>eNqFUU1P3DAQjapWKqX9DbXEOWGcOMnmiBCllVbiAlwt73jMepXYi-1s2f_Cj8W7i7hymnnS-9DMK4rfHCoOvLvcVNu1T95ZjFUNvK9AVAD9l-KMt91QClEPXz92Dt-LHzFuAJqm491Z8XpjDGFi3jBUI1qnkvWOJZq2FFSaA7EMYwozHoFymh3zUCU17pNFpjDZnU17NjtNgT08Hkk7G-1qJDbap_XR3inn45ooRWaCn9jo_5foY2KTenJ0MBppRv9CjthkXU4ffxbfjBoj_Xqf58XDn5v767_l8u723_XVssRmAansqF1BpxXRwtSq7hZi0KiFprZBUs2qBaV1W4NWgzYgeo0rpQVvCI3AAURzXlycfLfBP88Uk9z4ObgcKWvIhKHrhz6z-hMLg48xkJHbYCcV9pKDPFQhN_KjCnmoQoKQuYqsvDopKR-xsxRkREsOSduQny-1t596vAGN-JzX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090496797</pqid></control><display><type>article</type><title>Effect of calcination temperature on structure and photocatalytic activity under UV and visible light of nanosheets from low-cost magnetic leucoxene mineral</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Charerntanom, Wissanu ; Pecharapa, Wisanu ; Pavasupree, Suttipan ; Pavasupree, Sorapong</creator><creatorcontrib>Charerntanom, Wissanu ; Pecharapa, Wisanu ; Pavasupree, Suttipan ; Pavasupree, Sorapong</creatorcontrib><description>•This synthesis method provides a simple route to fabricate 2D nanostructured material from low-cost natural mineral.•More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01 and P-25). This research has experimentally synthesized the nanosheets from the naturally-mineral magnetic leucoxene under the hydrothermal synthesis condition of 105°C for 24h. Magnetic leucoxene was utilized as the starting material due to its high TiO2 content (70–80%) and inexpensiveness. The characterization of the synthesized nanosheets was subsequently carried out: the crystalline structure, the chemical composition, the shape, the size and the specific surface area, by the X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) specific surface area analysis. The analysis results indicated that the starting magnetic leucoxene is of rutile phase while the synthesized nanosheets are of titanate structure (H2TixO2x+1). After calcination at the temperature range of 300 and 400°C, the calcined samples demonstrated TiO2 (B). At 500 and 600°C, the calcined nanosheets revealed a bi-crystalline mixture consisting of TiO2 (B) and anatase TiO2. At 700–1000°C, the crystalline structure shows anatase and rutile phase. At 1100°C, the prepared samples consisted of a mixture of anatase, rutile phase of TiO2, and Fe2O3 phase. The synthesized product also exhibited the flower-like morphology with 2–5μm in diameter, and the nanosheets structure was slightly curved, with 100nm to 2μm in width and 1–3nm in thickness. At 100–200°C showed sheets-like structure. At 300–1100°C, the calcined nanosheets became unstable and began to decompose and transform into nanoparticles. The increasing size of nanoparticle decreased the specific surface area of the nanosheets, caused by increasing calcination temperature. Furthermore, the BET specific surface area of the nanosheets was approximately 279.8m2/g. More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01 and P-25).</description><identifier>ISSN: 1569-4410</identifier><identifier>EISSN: 1569-4429</identifier><identifier>DOI: 10.1016/j.photonics.2017.04.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anatase ; Catalytic activity ; Chemical composition ; Chemical synthesis ; Crystal structure ; Crystallinity ; Electromagnetics ; Hydrothermal ; Magnetic leucoxene mineral ; Morphology ; Nanoparticles ; Nanosheets ; Organic chemistry ; Photocatalysis ; Photonics ; Roasting ; Rutile ; Scanning electron microscopy ; Specific surface ; Surface area ; TiO2 ; Titanate ; Titanium ; Titanium dioxide ; Transmission electron microscopy ; Ultraviolet radiation ; X-ray diffraction ; X-ray fluorescence</subject><ispartof>Photonics and nanostructures, 2017-07, Vol.25, p.38-45</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jul 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-6e5b06daee8f2a26849dcd4de53cea3b50add520da9df047dcbad413ecf4c9043</citedby><cites>FETCH-LOGICAL-c380t-6e5b06daee8f2a26849dcd4de53cea3b50add520da9df047dcbad413ecf4c9043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.photonics.2017.04.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Charerntanom, Wissanu</creatorcontrib><creatorcontrib>Pecharapa, Wisanu</creatorcontrib><creatorcontrib>Pavasupree, Suttipan</creatorcontrib><creatorcontrib>Pavasupree, Sorapong</creatorcontrib><title>Effect of calcination temperature on structure and photocatalytic activity under UV and visible light of nanosheets from low-cost magnetic leucoxene mineral</title><title>Photonics and nanostructures</title><description>•This synthesis method provides a simple route to fabricate 2D nanostructured material from low-cost natural mineral.•More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01 and P-25). This research has experimentally synthesized the nanosheets from the naturally-mineral magnetic leucoxene under the hydrothermal synthesis condition of 105°C for 24h. Magnetic leucoxene was utilized as the starting material due to its high TiO2 content (70–80%) and inexpensiveness. The characterization of the synthesized nanosheets was subsequently carried out: the crystalline structure, the chemical composition, the shape, the size and the specific surface area, by the X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) specific surface area analysis. The analysis results indicated that the starting magnetic leucoxene is of rutile phase while the synthesized nanosheets are of titanate structure (H2TixO2x+1). After calcination at the temperature range of 300 and 400°C, the calcined samples demonstrated TiO2 (B). At 500 and 600°C, the calcined nanosheets revealed a bi-crystalline mixture consisting of TiO2 (B) and anatase TiO2. At 700–1000°C, the crystalline structure shows anatase and rutile phase. At 1100°C, the prepared samples consisted of a mixture of anatase, rutile phase of TiO2, and Fe2O3 phase. The synthesized product also exhibited the flower-like morphology with 2–5μm in diameter, and the nanosheets structure was slightly curved, with 100nm to 2μm in width and 1–3nm in thickness. At 100–200°C showed sheets-like structure. At 300–1100°C, the calcined nanosheets became unstable and began to decompose and transform into nanoparticles. The increasing size of nanoparticle decreased the specific surface area of the nanosheets, caused by increasing calcination temperature. Furthermore, the BET specific surface area of the nanosheets was approximately 279.8m2/g. More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01 and P-25).</description><subject>Anatase</subject><subject>Catalytic activity</subject><subject>Chemical composition</subject><subject>Chemical synthesis</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Electromagnetics</subject><subject>Hydrothermal</subject><subject>Magnetic leucoxene mineral</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nanosheets</subject><subject>Organic chemistry</subject><subject>Photocatalysis</subject><subject>Photonics</subject><subject>Roasting</subject><subject>Rutile</subject><subject>Scanning electron microscopy</subject><subject>Specific surface</subject><subject>Surface area</subject><subject>TiO2</subject><subject>Titanate</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Transmission electron microscopy</subject><subject>Ultraviolet radiation</subject><subject>X-ray diffraction</subject><subject>X-ray fluorescence</subject><issn>1569-4410</issn><issn>1569-4429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUU1P3DAQjapWKqX9DbXEOWGcOMnmiBCllVbiAlwt73jMepXYi-1s2f_Cj8W7i7hymnnS-9DMK4rfHCoOvLvcVNu1T95ZjFUNvK9AVAD9l-KMt91QClEPXz92Dt-LHzFuAJqm491Z8XpjDGFi3jBUI1qnkvWOJZq2FFSaA7EMYwozHoFymh3zUCU17pNFpjDZnU17NjtNgT08Hkk7G-1qJDbap_XR3inn45ooRWaCn9jo_5foY2KTenJ0MBppRv9CjthkXU4ffxbfjBoj_Xqf58XDn5v767_l8u723_XVssRmAansqF1BpxXRwtSq7hZi0KiFprZBUs2qBaV1W4NWgzYgeo0rpQVvCI3AAURzXlycfLfBP88Uk9z4ObgcKWvIhKHrhz6z-hMLg48xkJHbYCcV9pKDPFQhN_KjCnmoQoKQuYqsvDopKR-xsxRkREsOSduQny-1t596vAGN-JzX</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Charerntanom, Wissanu</creator><creator>Pecharapa, Wisanu</creator><creator>Pavasupree, Suttipan</creator><creator>Pavasupree, Sorapong</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170701</creationdate><title>Effect of calcination temperature on structure and photocatalytic activity under UV and visible light of nanosheets from low-cost magnetic leucoxene mineral</title><author>Charerntanom, Wissanu ; Pecharapa, Wisanu ; Pavasupree, Suttipan ; Pavasupree, Sorapong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-6e5b06daee8f2a26849dcd4de53cea3b50add520da9df047dcbad413ecf4c9043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anatase</topic><topic>Catalytic activity</topic><topic>Chemical composition</topic><topic>Chemical synthesis</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Electromagnetics</topic><topic>Hydrothermal</topic><topic>Magnetic leucoxene mineral</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nanosheets</topic><topic>Organic chemistry</topic><topic>Photocatalysis</topic><topic>Photonics</topic><topic>Roasting</topic><topic>Rutile</topic><topic>Scanning electron microscopy</topic><topic>Specific surface</topic><topic>Surface area</topic><topic>TiO2</topic><topic>Titanate</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Transmission electron microscopy</topic><topic>Ultraviolet radiation</topic><topic>X-ray diffraction</topic><topic>X-ray fluorescence</topic><toplevel>online_resources</toplevel><creatorcontrib>Charerntanom, Wissanu</creatorcontrib><creatorcontrib>Pecharapa, Wisanu</creatorcontrib><creatorcontrib>Pavasupree, Suttipan</creatorcontrib><creatorcontrib>Pavasupree, Sorapong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Photonics and nanostructures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charerntanom, Wissanu</au><au>Pecharapa, Wisanu</au><au>Pavasupree, Suttipan</au><au>Pavasupree, Sorapong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of calcination temperature on structure and photocatalytic activity under UV and visible light of nanosheets from low-cost magnetic leucoxene mineral</atitle><jtitle>Photonics and nanostructures</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>25</volume><spage>38</spage><epage>45</epage><pages>38-45</pages><issn>1569-4410</issn><eissn>1569-4429</eissn><abstract>•This synthesis method provides a simple route to fabricate 2D nanostructured material from low-cost natural mineral.•More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01 and P-25). This research has experimentally synthesized the nanosheets from the naturally-mineral magnetic leucoxene under the hydrothermal synthesis condition of 105°C for 24h. Magnetic leucoxene was utilized as the starting material due to its high TiO2 content (70–80%) and inexpensiveness. The characterization of the synthesized nanosheets was subsequently carried out: the crystalline structure, the chemical composition, the shape, the size and the specific surface area, by the X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) specific surface area analysis. The analysis results indicated that the starting magnetic leucoxene is of rutile phase while the synthesized nanosheets are of titanate structure (H2TixO2x+1). After calcination at the temperature range of 300 and 400°C, the calcined samples demonstrated TiO2 (B). At 500 and 600°C, the calcined nanosheets revealed a bi-crystalline mixture consisting of TiO2 (B) and anatase TiO2. At 700–1000°C, the crystalline structure shows anatase and rutile phase. At 1100°C, the prepared samples consisted of a mixture of anatase, rutile phase of TiO2, and Fe2O3 phase. The synthesized product also exhibited the flower-like morphology with 2–5μm in diameter, and the nanosheets structure was slightly curved, with 100nm to 2μm in width and 1–3nm in thickness. At 100–200°C showed sheets-like structure. At 300–1100°C, the calcined nanosheets became unstable and began to decompose and transform into nanoparticles. The increasing size of nanoparticle decreased the specific surface area of the nanosheets, caused by increasing calcination temperature. Furthermore, the BET specific surface area of the nanosheets was approximately 279.8m2/g. More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01 and P-25).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.photonics.2017.04.007</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-4410
ispartof Photonics and nanostructures, 2017-07, Vol.25, p.38-45
issn 1569-4410
1569-4429
language eng
recordid cdi_proquest_journals_2090496797
source ScienceDirect Journals (5 years ago - present)
subjects Anatase
Catalytic activity
Chemical composition
Chemical synthesis
Crystal structure
Crystallinity
Electromagnetics
Hydrothermal
Magnetic leucoxene mineral
Morphology
Nanoparticles
Nanosheets
Organic chemistry
Photocatalysis
Photonics
Roasting
Rutile
Scanning electron microscopy
Specific surface
Surface area
TiO2
Titanate
Titanium
Titanium dioxide
Transmission electron microscopy
Ultraviolet radiation
X-ray diffraction
X-ray fluorescence
title Effect of calcination temperature on structure and photocatalytic activity under UV and visible light of nanosheets from low-cost magnetic leucoxene mineral
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A30%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20calcination%20temperature%20on%20structure%20and%20photocatalytic%20activity%20under%20UV%20and%20visible%20light%20of%20nanosheets%20from%20low-cost%20magnetic%20leucoxene%20mineral&rft.jtitle=Photonics%20and%20nanostructures&rft.au=Charerntanom,%20Wissanu&rft.date=2017-07-01&rft.volume=25&rft.spage=38&rft.epage=45&rft.pages=38-45&rft.issn=1569-4410&rft.eissn=1569-4429&rft_id=info:doi/10.1016/j.photonics.2017.04.007&rft_dat=%3Cproquest_cross%3E2090496797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090496797&rft_id=info:pmid/&rft_els_id=S1569441017300573&rfr_iscdi=true