Mean value one of prime-pair constants
For k greater than 1 and r different from 0, let pi^k_{2r}(x) denote the number of prime pairs (p,p^k+2r) with p not exceeding (large) x. By the Bateman-Horn conjecture, the function pi^k_{2r}(x) should be asymptotic to (2/k)C^k_{2r}li_2(x), with certain specific constants C^k_{2r}. Heuristic argume...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2008-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For k greater than 1 and r different from 0, let pi^k_{2r}(x) denote the number of prime pairs (p,p^k+2r) with p not exceeding (large) x. By the Bateman-Horn conjecture, the function pi^k_{2r}(x) should be asymptotic to (2/k)C^k_{2r}li_2(x), with certain specific constants C^k_{2r}. Heuristic arguments lead to the conjecture that these constants have mean value one, just like the Hardy-Littlewood constants C_{2r} for prime pairs (p,p+2r). The conjecture is supported by extensive numerical work. |
---|---|
ISSN: | 2331-8422 |