Gravimetric biosensor based on a 1.3 GHz AlN shear-mode solidly mounted resonator

We investigate the performance of solidly mounted resonators based on Ir/tilted-AlN/Ir piezoelectric stacks as biosensors. These films are deposited by varying the pressure, the cathode power and the temperature of a two-step process based on depositing (00·2)-tilted AlN active layers over an (10·3)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2017-02, Vol.239, p.1282-1288
Hauptverfasser: DeMiguel-Ramos, Mario, Díaz-Durán, Bárbara, Escolano, José-Miguel, Barba, Mariano, Mirea, Teona, Olivares, Jimena, Clement, Marta, Iborra, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1288
container_issue
container_start_page 1282
container_title Sensors and actuators. B, Chemical
container_volume 239
creator DeMiguel-Ramos, Mario
Díaz-Durán, Bárbara
Escolano, José-Miguel
Barba, Mariano
Mirea, Teona
Olivares, Jimena
Clement, Marta
Iborra, Enrique
description We investigate the performance of solidly mounted resonators based on Ir/tilted-AlN/Ir piezoelectric stacks as biosensors. These films are deposited by varying the pressure, the cathode power and the temperature of a two-step process based on depositing (00·2)-tilted AlN active layers over an (10·3)-oriented AlN seed layer. To minimize the influence of the temperature coefficient of frequency on the stability of the biosensor, we use insulating acoustic mirrors made of layers of SiO2 and amorphous TaOx with non-λ/4 thicknesses, which enables to reduce the TCF to −14 ppm/°C. The mass loading of the resonators with SiO2 thin films results in a sensitivity of 1800 kHz/pg·cm2. Surface functionalization consists on the binding of silane groups on plasma oxidized SiO2 surfaces. After a glutaraldehyde link, streptavidin is bonded to the surface to receive biotinylated receptors for several species. We test thrombin-binding aptamer (TBA29 against thrombin, and IgG antibody against immunoglobulin). The sensors response to species of different molecular weight like TBA-29 (9.75 kDa) or IgG antibody (150 kDa) is monitored. Finally, we assess the response of the biosensors to different thrombin concentrations (ranging from 4 nM to 270 nM) on surfaces functionalized with the TBA29 aptamer.
doi_str_mv 10.1016/j.snb.2016.09.079
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2090402117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090402117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b96a46aa5fdb2c7471b7e3159ec7023a6a251defb0dc81311d60e8113d2bd5bf3</originalsourceid><addsrcrecordid>eNotkFFLwzAUhYMoOKc_wLeAz633Jm3SPI6hmzAUQZ9D0qTY0jYz6YT56-2YT-c8fJwDHyH3CDkCiscuT6PN2VxzUDlIdUEWWEmecZDykixAsTIrAMprcpNSBwAFF7Ag75toftrBT7GtqW1D8mMKkVqTvKNhpIZizulm-0tX_StNX97EbAjO0xT61vVHOoTDOM1s9CmMZgrxllw1pk_-7j-X5PP56WO9zXZvm5f1apfVHMWUWSVMIYwpG2dZLQuJVnqOpfK1BMaNMKxE5xsLrq6QIzoBvkLkjllX2oYvycN5dx_D98GnSXfhEMf5UjNQUABDlDOFZ6qOIaXoG72P7WDiUSPokznd6dmcPpnToPRsjv8Bj5Jhsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090402117</pqid></control><display><type>article</type><title>Gravimetric biosensor based on a 1.3 GHz AlN shear-mode solidly mounted resonator</title><source>Elsevier ScienceDirect Journals Complete</source><creator>DeMiguel-Ramos, Mario ; Díaz-Durán, Bárbara ; Escolano, José-Miguel ; Barba, Mariano ; Mirea, Teona ; Olivares, Jimena ; Clement, Marta ; Iborra, Enrique</creator><creatorcontrib>DeMiguel-Ramos, Mario ; Díaz-Durán, Bárbara ; Escolano, José-Miguel ; Barba, Mariano ; Mirea, Teona ; Olivares, Jimena ; Clement, Marta ; Iborra, Enrique</creatorcontrib><description>We investigate the performance of solidly mounted resonators based on Ir/tilted-AlN/Ir piezoelectric stacks as biosensors. These films are deposited by varying the pressure, the cathode power and the temperature of a two-step process based on depositing (00·2)-tilted AlN active layers over an (10·3)-oriented AlN seed layer. To minimize the influence of the temperature coefficient of frequency on the stability of the biosensor, we use insulating acoustic mirrors made of layers of SiO2 and amorphous TaOx with non-λ/4 thicknesses, which enables to reduce the TCF to −14 ppm/°C. The mass loading of the resonators with SiO2 thin films results in a sensitivity of 1800 kHz/pg·cm2. Surface functionalization consists on the binding of silane groups on plasma oxidized SiO2 surfaces. After a glutaraldehyde link, streptavidin is bonded to the surface to receive biotinylated receptors for several species. We test thrombin-binding aptamer (TBA29 against thrombin, and IgG antibody against immunoglobulin). The sensors response to species of different molecular weight like TBA-29 (9.75 kDa) or IgG antibody (150 kDa) is monitored. Finally, we assess the response of the biosensors to different thrombin concentrations (ranging from 4 nM to 270 nM) on surfaces functionalized with the TBA29 aptamer.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2016.09.079</identifier><language>eng</language><publisher>Lausanne: Elsevier Science Ltd</publisher><subject>Acoustic insulation ; Aluminum nitride ; Binding ; Biosensors ; Frequency stability ; Glutaraldehyde ; Gravimetry ; IgG antibody ; Molecular weight ; Piezoelectricity ; Receptors ; Resonators ; Sensitivity analysis ; Shear strain ; Silicon dioxide ; Surface chemistry ; Temperature effects ; Thin films ; Thrombin</subject><ispartof>Sensors and actuators. B, Chemical, 2017-02, Vol.239, p.1282-1288</ispartof><rights>Copyright Elsevier Science Ltd. Feb 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b96a46aa5fdb2c7471b7e3159ec7023a6a251defb0dc81311d60e8113d2bd5bf3</citedby><cites>FETCH-LOGICAL-c316t-b96a46aa5fdb2c7471b7e3159ec7023a6a251defb0dc81311d60e8113d2bd5bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>DeMiguel-Ramos, Mario</creatorcontrib><creatorcontrib>Díaz-Durán, Bárbara</creatorcontrib><creatorcontrib>Escolano, José-Miguel</creatorcontrib><creatorcontrib>Barba, Mariano</creatorcontrib><creatorcontrib>Mirea, Teona</creatorcontrib><creatorcontrib>Olivares, Jimena</creatorcontrib><creatorcontrib>Clement, Marta</creatorcontrib><creatorcontrib>Iborra, Enrique</creatorcontrib><title>Gravimetric biosensor based on a 1.3 GHz AlN shear-mode solidly mounted resonator</title><title>Sensors and actuators. B, Chemical</title><description>We investigate the performance of solidly mounted resonators based on Ir/tilted-AlN/Ir piezoelectric stacks as biosensors. These films are deposited by varying the pressure, the cathode power and the temperature of a two-step process based on depositing (00·2)-tilted AlN active layers over an (10·3)-oriented AlN seed layer. To minimize the influence of the temperature coefficient of frequency on the stability of the biosensor, we use insulating acoustic mirrors made of layers of SiO2 and amorphous TaOx with non-λ/4 thicknesses, which enables to reduce the TCF to −14 ppm/°C. The mass loading of the resonators with SiO2 thin films results in a sensitivity of 1800 kHz/pg·cm2. Surface functionalization consists on the binding of silane groups on plasma oxidized SiO2 surfaces. After a glutaraldehyde link, streptavidin is bonded to the surface to receive biotinylated receptors for several species. We test thrombin-binding aptamer (TBA29 against thrombin, and IgG antibody against immunoglobulin). The sensors response to species of different molecular weight like TBA-29 (9.75 kDa) or IgG antibody (150 kDa) is monitored. Finally, we assess the response of the biosensors to different thrombin concentrations (ranging from 4 nM to 270 nM) on surfaces functionalized with the TBA29 aptamer.</description><subject>Acoustic insulation</subject><subject>Aluminum nitride</subject><subject>Binding</subject><subject>Biosensors</subject><subject>Frequency stability</subject><subject>Glutaraldehyde</subject><subject>Gravimetry</subject><subject>IgG antibody</subject><subject>Molecular weight</subject><subject>Piezoelectricity</subject><subject>Receptors</subject><subject>Resonators</subject><subject>Sensitivity analysis</subject><subject>Shear strain</subject><subject>Silicon dioxide</subject><subject>Surface chemistry</subject><subject>Temperature effects</subject><subject>Thin films</subject><subject>Thrombin</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkFFLwzAUhYMoOKc_wLeAz633Jm3SPI6hmzAUQZ9D0qTY0jYz6YT56-2YT-c8fJwDHyH3CDkCiscuT6PN2VxzUDlIdUEWWEmecZDykixAsTIrAMprcpNSBwAFF7Ag75toftrBT7GtqW1D8mMKkVqTvKNhpIZizulm-0tX_StNX97EbAjO0xT61vVHOoTDOM1s9CmMZgrxllw1pk_-7j-X5PP56WO9zXZvm5f1apfVHMWUWSVMIYwpG2dZLQuJVnqOpfK1BMaNMKxE5xsLrq6QIzoBvkLkjllX2oYvycN5dx_D98GnSXfhEMf5UjNQUABDlDOFZ6qOIaXoG72P7WDiUSPokznd6dmcPpnToPRsjv8Bj5Jhsg</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>DeMiguel-Ramos, Mario</creator><creator>Díaz-Durán, Bárbara</creator><creator>Escolano, José-Miguel</creator><creator>Barba, Mariano</creator><creator>Mirea, Teona</creator><creator>Olivares, Jimena</creator><creator>Clement, Marta</creator><creator>Iborra, Enrique</creator><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170201</creationdate><title>Gravimetric biosensor based on a 1.3 GHz AlN shear-mode solidly mounted resonator</title><author>DeMiguel-Ramos, Mario ; Díaz-Durán, Bárbara ; Escolano, José-Miguel ; Barba, Mariano ; Mirea, Teona ; Olivares, Jimena ; Clement, Marta ; Iborra, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b96a46aa5fdb2c7471b7e3159ec7023a6a251defb0dc81311d60e8113d2bd5bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acoustic insulation</topic><topic>Aluminum nitride</topic><topic>Binding</topic><topic>Biosensors</topic><topic>Frequency stability</topic><topic>Glutaraldehyde</topic><topic>Gravimetry</topic><topic>IgG antibody</topic><topic>Molecular weight</topic><topic>Piezoelectricity</topic><topic>Receptors</topic><topic>Resonators</topic><topic>Sensitivity analysis</topic><topic>Shear strain</topic><topic>Silicon dioxide</topic><topic>Surface chemistry</topic><topic>Temperature effects</topic><topic>Thin films</topic><topic>Thrombin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeMiguel-Ramos, Mario</creatorcontrib><creatorcontrib>Díaz-Durán, Bárbara</creatorcontrib><creatorcontrib>Escolano, José-Miguel</creatorcontrib><creatorcontrib>Barba, Mariano</creatorcontrib><creatorcontrib>Mirea, Teona</creatorcontrib><creatorcontrib>Olivares, Jimena</creatorcontrib><creatorcontrib>Clement, Marta</creatorcontrib><creatorcontrib>Iborra, Enrique</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeMiguel-Ramos, Mario</au><au>Díaz-Durán, Bárbara</au><au>Escolano, José-Miguel</au><au>Barba, Mariano</au><au>Mirea, Teona</au><au>Olivares, Jimena</au><au>Clement, Marta</au><au>Iborra, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravimetric biosensor based on a 1.3 GHz AlN shear-mode solidly mounted resonator</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>239</volume><spage>1282</spage><epage>1288</epage><pages>1282-1288</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>We investigate the performance of solidly mounted resonators based on Ir/tilted-AlN/Ir piezoelectric stacks as biosensors. These films are deposited by varying the pressure, the cathode power and the temperature of a two-step process based on depositing (00·2)-tilted AlN active layers over an (10·3)-oriented AlN seed layer. To minimize the influence of the temperature coefficient of frequency on the stability of the biosensor, we use insulating acoustic mirrors made of layers of SiO2 and amorphous TaOx with non-λ/4 thicknesses, which enables to reduce the TCF to −14 ppm/°C. The mass loading of the resonators with SiO2 thin films results in a sensitivity of 1800 kHz/pg·cm2. Surface functionalization consists on the binding of silane groups on plasma oxidized SiO2 surfaces. After a glutaraldehyde link, streptavidin is bonded to the surface to receive biotinylated receptors for several species. We test thrombin-binding aptamer (TBA29 against thrombin, and IgG antibody against immunoglobulin). The sensors response to species of different molecular weight like TBA-29 (9.75 kDa) or IgG antibody (150 kDa) is monitored. Finally, we assess the response of the biosensors to different thrombin concentrations (ranging from 4 nM to 270 nM) on surfaces functionalized with the TBA29 aptamer.</abstract><cop>Lausanne</cop><pub>Elsevier Science Ltd</pub><doi>10.1016/j.snb.2016.09.079</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2017-02, Vol.239, p.1282-1288
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_journals_2090402117
source Elsevier ScienceDirect Journals Complete
subjects Acoustic insulation
Aluminum nitride
Binding
Biosensors
Frequency stability
Glutaraldehyde
Gravimetry
IgG antibody
Molecular weight
Piezoelectricity
Receptors
Resonators
Sensitivity analysis
Shear strain
Silicon dioxide
Surface chemistry
Temperature effects
Thin films
Thrombin
title Gravimetric biosensor based on a 1.3 GHz AlN shear-mode solidly mounted resonator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravimetric%20biosensor%20based%20on%20a%201.3%20GHz%20AlN%20shear-mode%20solidly%20mounted%20resonator&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=DeMiguel-Ramos,%20Mario&rft.date=2017-02-01&rft.volume=239&rft.spage=1282&rft.epage=1288&rft.pages=1282-1288&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2016.09.079&rft_dat=%3Cproquest_cross%3E2090402117%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090402117&rft_id=info:pmid/&rfr_iscdi=true