Move acceptance in local search metaheuristics for cross-domain search
•Classification of local search metaheuristics based on their move acceptance methods.•A concise overview of local search metaheuristics in relevant classes.•Cross-domain performance comparison of 8 local search metaheuristics from each class.•Simulated annealing (SA) has the best performance over 4...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2018-11, Vol.109, p.131-151 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 151 |
---|---|
container_issue | |
container_start_page | 131 |
container_title | Expert systems with applications |
container_volume | 109 |
creator | Jackson, Warren G. Özcan, Ender John, Robert I. |
description | •Classification of local search metaheuristics based on their move acceptance methods.•A concise overview of local search metaheuristics in relevant classes.•Cross-domain performance comparison of 8 local search metaheuristics from each class.•Simulated annealing (SA) has the best performance over 45 instances from 9 domains.•Parameters of SA needs re-tuning for each domain to achieve this performance.
Metaheuristics provide high-level instructions for designing heuristic optimisation algorithms and have been successfully applied to a range of computationally hard real-world problems. Local search metaheuristics operate under a single-point based search framework with the goal of iteratively improving a solution in hand over time with respect to a single objective using certain solution perturbation strategies, known as move operators, and move acceptance methods starting from an initially generated solution. Performance of a local search method varies from one domain to another, even from one instance to another in the same domain. There is a growing number of studies on ‘more general’ search methods referred to as cross-domain search methods, or hyper-heuristics, that operate at a high-level solving characteristically different problems, preferably without expert intervention. This paper provides a taxonomy and overview of existing local search metaheuristics along with an empirical study into the effects that move acceptance methods, as components of single-point based local search metaheuristics, have on the cross-domain performance of such algorithms for solving multiple combinatorial optimisation problems. The experimental results across a benchmark of nine different computationally hard problems highlight the shortcomings of existing and well-known methods for use as components of cross-domain search methods, despite being re-tuned for solving each domain. |
doi_str_mv | 10.1016/j.eswa.2018.05.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2090264207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417418302835</els_id><sourcerecordid>2090264207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-72ff3802fc1b1fe840fda7390afcec60c576f0f5beb0a72e8b8e658bcb54e1713</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6wisU4YO7GdSGxQRQGpiA2sLWcyVh21dbHTIv6elLBmNZtz71wdxm44FBy4uusLSl-2EMDrAmQBoE7YjNe6zJVuylM2g0bqvOK6OmcXKfUAXAPoGVu8hgNlFpF2g90iZX6brQPadZbIRlxlGxrsivbRp8FjylyIGcaQUt6FjR3hCbtiZ86uE13_3Uv2sXh8nz_ny7enl_nDMseKyyHXwrmyBuGQt9xRXYHrrC4bsA4JFaDUyoGTLbVgtaC6rUnJusVWVsQ1Ly_Z7dS7i-FzT2kwfdjH7fjSCGhAqEqAHikxUb9LIzmzi35j47fhYI6-TG-OvszRlwFpRl9j6H4K0bj_4CmahJ5GJZ2PhIPpgv8v_gNVv3SO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090264207</pqid></control><display><type>article</type><title>Move acceptance in local search metaheuristics for cross-domain search</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jackson, Warren G. ; Özcan, Ender ; John, Robert I.</creator><creatorcontrib>Jackson, Warren G. ; Özcan, Ender ; John, Robert I.</creatorcontrib><description>•Classification of local search metaheuristics based on their move acceptance methods.•A concise overview of local search metaheuristics in relevant classes.•Cross-domain performance comparison of 8 local search metaheuristics from each class.•Simulated annealing (SA) has the best performance over 45 instances from 9 domains.•Parameters of SA needs re-tuning for each domain to achieve this performance.
Metaheuristics provide high-level instructions for designing heuristic optimisation algorithms and have been successfully applied to a range of computationally hard real-world problems. Local search metaheuristics operate under a single-point based search framework with the goal of iteratively improving a solution in hand over time with respect to a single objective using certain solution perturbation strategies, known as move operators, and move acceptance methods starting from an initially generated solution. Performance of a local search method varies from one domain to another, even from one instance to another in the same domain. There is a growing number of studies on ‘more general’ search methods referred to as cross-domain search methods, or hyper-heuristics, that operate at a high-level solving characteristically different problems, preferably without expert intervention. This paper provides a taxonomy and overview of existing local search metaheuristics along with an empirical study into the effects that move acceptance methods, as components of single-point based local search metaheuristics, have on the cross-domain performance of such algorithms for solving multiple combinatorial optimisation problems. The experimental results across a benchmark of nine different computationally hard problems highlight the shortcomings of existing and well-known methods for use as components of cross-domain search methods, despite being re-tuned for solving each domain.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2018.05.006</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Combinatorial analysis ; Combinatorial optimization ; Heuristic ; Heuristic methods ; Level (quantity) ; Optimization ; Optimization algorithms ; Parameter control ; Parameter optimization ; Search algorithms ; Search methods ; Stochastic local search ; Stochastic models ; Taxonomy ; Trajectory methods</subject><ispartof>Expert systems with applications, 2018-11, Vol.109, p.131-151</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-72ff3802fc1b1fe840fda7390afcec60c576f0f5beb0a72e8b8e658bcb54e1713</citedby><cites>FETCH-LOGICAL-c415t-72ff3802fc1b1fe840fda7390afcec60c576f0f5beb0a72e8b8e658bcb54e1713</cites><orcidid>0000-0003-0276-1391 ; 0000-0002-5416-4460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2018.05.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jackson, Warren G.</creatorcontrib><creatorcontrib>Özcan, Ender</creatorcontrib><creatorcontrib>John, Robert I.</creatorcontrib><title>Move acceptance in local search metaheuristics for cross-domain search</title><title>Expert systems with applications</title><description>•Classification of local search metaheuristics based on their move acceptance methods.•A concise overview of local search metaheuristics in relevant classes.•Cross-domain performance comparison of 8 local search metaheuristics from each class.•Simulated annealing (SA) has the best performance over 45 instances from 9 domains.•Parameters of SA needs re-tuning for each domain to achieve this performance.
Metaheuristics provide high-level instructions for designing heuristic optimisation algorithms and have been successfully applied to a range of computationally hard real-world problems. Local search metaheuristics operate under a single-point based search framework with the goal of iteratively improving a solution in hand over time with respect to a single objective using certain solution perturbation strategies, known as move operators, and move acceptance methods starting from an initially generated solution. Performance of a local search method varies from one domain to another, even from one instance to another in the same domain. There is a growing number of studies on ‘more general’ search methods referred to as cross-domain search methods, or hyper-heuristics, that operate at a high-level solving characteristically different problems, preferably without expert intervention. This paper provides a taxonomy and overview of existing local search metaheuristics along with an empirical study into the effects that move acceptance methods, as components of single-point based local search metaheuristics, have on the cross-domain performance of such algorithms for solving multiple combinatorial optimisation problems. The experimental results across a benchmark of nine different computationally hard problems highlight the shortcomings of existing and well-known methods for use as components of cross-domain search methods, despite being re-tuned for solving each domain.</description><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Combinatorial optimization</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Level (quantity)</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Parameter control</subject><subject>Parameter optimization</subject><subject>Search algorithms</subject><subject>Search methods</subject><subject>Stochastic local search</subject><subject>Stochastic models</subject><subject>Taxonomy</subject><subject>Trajectory methods</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxA6wisU4YO7GdSGxQRQGpiA2sLWcyVh21dbHTIv6elLBmNZtz71wdxm44FBy4uusLSl-2EMDrAmQBoE7YjNe6zJVuylM2g0bqvOK6OmcXKfUAXAPoGVu8hgNlFpF2g90iZX6brQPadZbIRlxlGxrsivbRp8FjylyIGcaQUt6FjR3hCbtiZ86uE13_3Uv2sXh8nz_ny7enl_nDMseKyyHXwrmyBuGQt9xRXYHrrC4bsA4JFaDUyoGTLbVgtaC6rUnJusVWVsQ1Ly_Z7dS7i-FzT2kwfdjH7fjSCGhAqEqAHikxUb9LIzmzi35j47fhYI6-TG-OvszRlwFpRl9j6H4K0bj_4CmahJ5GJZ2PhIPpgv8v_gNVv3SO</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Jackson, Warren G.</creator><creator>Özcan, Ender</creator><creator>John, Robert I.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0276-1391</orcidid><orcidid>https://orcid.org/0000-0002-5416-4460</orcidid></search><sort><creationdate>20181101</creationdate><title>Move acceptance in local search metaheuristics for cross-domain search</title><author>Jackson, Warren G. ; Özcan, Ender ; John, Robert I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-72ff3802fc1b1fe840fda7390afcec60c576f0f5beb0a72e8b8e658bcb54e1713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Combinatorial optimization</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Level (quantity)</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Parameter control</topic><topic>Parameter optimization</topic><topic>Search algorithms</topic><topic>Search methods</topic><topic>Stochastic local search</topic><topic>Stochastic models</topic><topic>Taxonomy</topic><topic>Trajectory methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackson, Warren G.</creatorcontrib><creatorcontrib>Özcan, Ender</creatorcontrib><creatorcontrib>John, Robert I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackson, Warren G.</au><au>Özcan, Ender</au><au>John, Robert I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Move acceptance in local search metaheuristics for cross-domain search</atitle><jtitle>Expert systems with applications</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>109</volume><spage>131</spage><epage>151</epage><pages>131-151</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•Classification of local search metaheuristics based on their move acceptance methods.•A concise overview of local search metaheuristics in relevant classes.•Cross-domain performance comparison of 8 local search metaheuristics from each class.•Simulated annealing (SA) has the best performance over 45 instances from 9 domains.•Parameters of SA needs re-tuning for each domain to achieve this performance.
Metaheuristics provide high-level instructions for designing heuristic optimisation algorithms and have been successfully applied to a range of computationally hard real-world problems. Local search metaheuristics operate under a single-point based search framework with the goal of iteratively improving a solution in hand over time with respect to a single objective using certain solution perturbation strategies, known as move operators, and move acceptance methods starting from an initially generated solution. Performance of a local search method varies from one domain to another, even from one instance to another in the same domain. There is a growing number of studies on ‘more general’ search methods referred to as cross-domain search methods, or hyper-heuristics, that operate at a high-level solving characteristically different problems, preferably without expert intervention. This paper provides a taxonomy and overview of existing local search metaheuristics along with an empirical study into the effects that move acceptance methods, as components of single-point based local search metaheuristics, have on the cross-domain performance of such algorithms for solving multiple combinatorial optimisation problems. The experimental results across a benchmark of nine different computationally hard problems highlight the shortcomings of existing and well-known methods for use as components of cross-domain search methods, despite being re-tuned for solving each domain.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2018.05.006</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-0276-1391</orcidid><orcidid>https://orcid.org/0000-0002-5416-4460</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2018-11, Vol.109, p.131-151 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_journals_2090264207 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Combinatorial analysis Combinatorial optimization Heuristic Heuristic methods Level (quantity) Optimization Optimization algorithms Parameter control Parameter optimization Search algorithms Search methods Stochastic local search Stochastic models Taxonomy Trajectory methods |
title | Move acceptance in local search metaheuristics for cross-domain search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A43%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Move%20acceptance%20in%20local%20search%20metaheuristics%20for%20cross-domain%20search&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Jackson,%20Warren%20G.&rft.date=2018-11-01&rft.volume=109&rft.spage=131&rft.epage=151&rft.pages=131-151&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2018.05.006&rft_dat=%3Cproquest_cross%3E2090264207%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090264207&rft_id=info:pmid/&rft_els_id=S0957417418302835&rfr_iscdi=true |