Move acceptance in local search metaheuristics for cross-domain search

•Classification of local search metaheuristics based on their move acceptance methods.•A concise overview of local search metaheuristics in relevant classes.•Cross-domain performance comparison of 8 local search metaheuristics from each class.•Simulated annealing (SA) has the best performance over 4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2018-11, Vol.109, p.131-151
Hauptverfasser: Jackson, Warren G., Özcan, Ender, John, Robert I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue
container_start_page 131
container_title Expert systems with applications
container_volume 109
creator Jackson, Warren G.
Özcan, Ender
John, Robert I.
description •Classification of local search metaheuristics based on their move acceptance methods.•A concise overview of local search metaheuristics in relevant classes.•Cross-domain performance comparison of 8 local search metaheuristics from each class.•Simulated annealing (SA) has the best performance over 45 instances from 9 domains.•Parameters of SA needs re-tuning for each domain to achieve this performance. Metaheuristics provide high-level instructions for designing heuristic optimisation algorithms and have been successfully applied to a range of computationally hard real-world problems. Local search metaheuristics operate under a single-point based search framework with the goal of iteratively improving a solution in hand over time with respect to a single objective using certain solution perturbation strategies, known as move operators, and move acceptance methods starting from an initially generated solution. Performance of a local search method varies from one domain to another, even from one instance to another in the same domain. There is a growing number of studies on ‘more general’ search methods referred to as cross-domain search methods, or hyper-heuristics, that operate at a high-level solving characteristically different problems, preferably without expert intervention. This paper provides a taxonomy and overview of existing local search metaheuristics along with an empirical study into the effects that move acceptance methods, as components of single-point based local search metaheuristics, have on the cross-domain performance of such algorithms for solving multiple combinatorial optimisation problems. The experimental results across a benchmark of nine different computationally hard problems highlight the shortcomings of existing and well-known methods for use as components of cross-domain search methods, despite being re-tuned for solving each domain.
doi_str_mv 10.1016/j.eswa.2018.05.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2090264207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417418302835</els_id><sourcerecordid>2090264207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-72ff3802fc1b1fe840fda7390afcec60c576f0f5beb0a72e8b8e658bcb54e1713</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6wisU4YO7GdSGxQRQGpiA2sLWcyVh21dbHTIv6elLBmNZtz71wdxm44FBy4uusLSl-2EMDrAmQBoE7YjNe6zJVuylM2g0bqvOK6OmcXKfUAXAPoGVu8hgNlFpF2g90iZX6brQPadZbIRlxlGxrsivbRp8FjylyIGcaQUt6FjR3hCbtiZ86uE13_3Uv2sXh8nz_ny7enl_nDMseKyyHXwrmyBuGQt9xRXYHrrC4bsA4JFaDUyoGTLbVgtaC6rUnJusVWVsQ1Ly_Z7dS7i-FzT2kwfdjH7fjSCGhAqEqAHikxUb9LIzmzi35j47fhYI6-TG-OvszRlwFpRl9j6H4K0bj_4CmahJ5GJZ2PhIPpgv8v_gNVv3SO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090264207</pqid></control><display><type>article</type><title>Move acceptance in local search metaheuristics for cross-domain search</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jackson, Warren G. ; Özcan, Ender ; John, Robert I.</creator><creatorcontrib>Jackson, Warren G. ; Özcan, Ender ; John, Robert I.</creatorcontrib><description>•Classification of local search metaheuristics based on their move acceptance methods.•A concise overview of local search metaheuristics in relevant classes.•Cross-domain performance comparison of 8 local search metaheuristics from each class.•Simulated annealing (SA) has the best performance over 45 instances from 9 domains.•Parameters of SA needs re-tuning for each domain to achieve this performance. Metaheuristics provide high-level instructions for designing heuristic optimisation algorithms and have been successfully applied to a range of computationally hard real-world problems. Local search metaheuristics operate under a single-point based search framework with the goal of iteratively improving a solution in hand over time with respect to a single objective using certain solution perturbation strategies, known as move operators, and move acceptance methods starting from an initially generated solution. Performance of a local search method varies from one domain to another, even from one instance to another in the same domain. There is a growing number of studies on ‘more general’ search methods referred to as cross-domain search methods, or hyper-heuristics, that operate at a high-level solving characteristically different problems, preferably without expert intervention. This paper provides a taxonomy and overview of existing local search metaheuristics along with an empirical study into the effects that move acceptance methods, as components of single-point based local search metaheuristics, have on the cross-domain performance of such algorithms for solving multiple combinatorial optimisation problems. The experimental results across a benchmark of nine different computationally hard problems highlight the shortcomings of existing and well-known methods for use as components of cross-domain search methods, despite being re-tuned for solving each domain.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2018.05.006</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Combinatorial analysis ; Combinatorial optimization ; Heuristic ; Heuristic methods ; Level (quantity) ; Optimization ; Optimization algorithms ; Parameter control ; Parameter optimization ; Search algorithms ; Search methods ; Stochastic local search ; Stochastic models ; Taxonomy ; Trajectory methods</subject><ispartof>Expert systems with applications, 2018-11, Vol.109, p.131-151</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-72ff3802fc1b1fe840fda7390afcec60c576f0f5beb0a72e8b8e658bcb54e1713</citedby><cites>FETCH-LOGICAL-c415t-72ff3802fc1b1fe840fda7390afcec60c576f0f5beb0a72e8b8e658bcb54e1713</cites><orcidid>0000-0003-0276-1391 ; 0000-0002-5416-4460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2018.05.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jackson, Warren G.</creatorcontrib><creatorcontrib>Özcan, Ender</creatorcontrib><creatorcontrib>John, Robert I.</creatorcontrib><title>Move acceptance in local search metaheuristics for cross-domain search</title><title>Expert systems with applications</title><description>•Classification of local search metaheuristics based on their move acceptance methods.•A concise overview of local search metaheuristics in relevant classes.•Cross-domain performance comparison of 8 local search metaheuristics from each class.•Simulated annealing (SA) has the best performance over 45 instances from 9 domains.•Parameters of SA needs re-tuning for each domain to achieve this performance. Metaheuristics provide high-level instructions for designing heuristic optimisation algorithms and have been successfully applied to a range of computationally hard real-world problems. Local search metaheuristics operate under a single-point based search framework with the goal of iteratively improving a solution in hand over time with respect to a single objective using certain solution perturbation strategies, known as move operators, and move acceptance methods starting from an initially generated solution. Performance of a local search method varies from one domain to another, even from one instance to another in the same domain. There is a growing number of studies on ‘more general’ search methods referred to as cross-domain search methods, or hyper-heuristics, that operate at a high-level solving characteristically different problems, preferably without expert intervention. This paper provides a taxonomy and overview of existing local search metaheuristics along with an empirical study into the effects that move acceptance methods, as components of single-point based local search metaheuristics, have on the cross-domain performance of such algorithms for solving multiple combinatorial optimisation problems. The experimental results across a benchmark of nine different computationally hard problems highlight the shortcomings of existing and well-known methods for use as components of cross-domain search methods, despite being re-tuned for solving each domain.</description><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Combinatorial optimization</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Level (quantity)</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Parameter control</subject><subject>Parameter optimization</subject><subject>Search algorithms</subject><subject>Search methods</subject><subject>Stochastic local search</subject><subject>Stochastic models</subject><subject>Taxonomy</subject><subject>Trajectory methods</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxA6wisU4YO7GdSGxQRQGpiA2sLWcyVh21dbHTIv6elLBmNZtz71wdxm44FBy4uusLSl-2EMDrAmQBoE7YjNe6zJVuylM2g0bqvOK6OmcXKfUAXAPoGVu8hgNlFpF2g90iZX6brQPadZbIRlxlGxrsivbRp8FjylyIGcaQUt6FjR3hCbtiZ86uE13_3Uv2sXh8nz_ny7enl_nDMseKyyHXwrmyBuGQt9xRXYHrrC4bsA4JFaDUyoGTLbVgtaC6rUnJusVWVsQ1Ly_Z7dS7i-FzT2kwfdjH7fjSCGhAqEqAHikxUb9LIzmzi35j47fhYI6-TG-OvszRlwFpRl9j6H4K0bj_4CmahJ5GJZ2PhIPpgv8v_gNVv3SO</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Jackson, Warren G.</creator><creator>Özcan, Ender</creator><creator>John, Robert I.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0276-1391</orcidid><orcidid>https://orcid.org/0000-0002-5416-4460</orcidid></search><sort><creationdate>20181101</creationdate><title>Move acceptance in local search metaheuristics for cross-domain search</title><author>Jackson, Warren G. ; Özcan, Ender ; John, Robert I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-72ff3802fc1b1fe840fda7390afcec60c576f0f5beb0a72e8b8e658bcb54e1713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Combinatorial optimization</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Level (quantity)</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Parameter control</topic><topic>Parameter optimization</topic><topic>Search algorithms</topic><topic>Search methods</topic><topic>Stochastic local search</topic><topic>Stochastic models</topic><topic>Taxonomy</topic><topic>Trajectory methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackson, Warren G.</creatorcontrib><creatorcontrib>Özcan, Ender</creatorcontrib><creatorcontrib>John, Robert I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackson, Warren G.</au><au>Özcan, Ender</au><au>John, Robert I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Move acceptance in local search metaheuristics for cross-domain search</atitle><jtitle>Expert systems with applications</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>109</volume><spage>131</spage><epage>151</epage><pages>131-151</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•Classification of local search metaheuristics based on their move acceptance methods.•A concise overview of local search metaheuristics in relevant classes.•Cross-domain performance comparison of 8 local search metaheuristics from each class.•Simulated annealing (SA) has the best performance over 45 instances from 9 domains.•Parameters of SA needs re-tuning for each domain to achieve this performance. Metaheuristics provide high-level instructions for designing heuristic optimisation algorithms and have been successfully applied to a range of computationally hard real-world problems. Local search metaheuristics operate under a single-point based search framework with the goal of iteratively improving a solution in hand over time with respect to a single objective using certain solution perturbation strategies, known as move operators, and move acceptance methods starting from an initially generated solution. Performance of a local search method varies from one domain to another, even from one instance to another in the same domain. There is a growing number of studies on ‘more general’ search methods referred to as cross-domain search methods, or hyper-heuristics, that operate at a high-level solving characteristically different problems, preferably without expert intervention. This paper provides a taxonomy and overview of existing local search metaheuristics along with an empirical study into the effects that move acceptance methods, as components of single-point based local search metaheuristics, have on the cross-domain performance of such algorithms for solving multiple combinatorial optimisation problems. The experimental results across a benchmark of nine different computationally hard problems highlight the shortcomings of existing and well-known methods for use as components of cross-domain search methods, despite being re-tuned for solving each domain.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2018.05.006</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-0276-1391</orcidid><orcidid>https://orcid.org/0000-0002-5416-4460</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2018-11, Vol.109, p.131-151
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2090264207
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Combinatorial analysis
Combinatorial optimization
Heuristic
Heuristic methods
Level (quantity)
Optimization
Optimization algorithms
Parameter control
Parameter optimization
Search algorithms
Search methods
Stochastic local search
Stochastic models
Taxonomy
Trajectory methods
title Move acceptance in local search metaheuristics for cross-domain search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A43%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Move%20acceptance%20in%20local%20search%20metaheuristics%20for%20cross-domain%20search&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Jackson,%20Warren%20G.&rft.date=2018-11-01&rft.volume=109&rft.spage=131&rft.epage=151&rft.pages=131-151&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2018.05.006&rft_dat=%3Cproquest_cross%3E2090264207%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090264207&rft_id=info:pmid/&rft_els_id=S0957417418302835&rfr_iscdi=true