Hysteresis Design of Magnetocaloric Materials—From Basic Mechanisms to Applications

Magnetic refrigeration relies on a substantial entropy change in a magnetocaloric material when a magnetic field is applied. Such entropy changes are present at first‐order magnetostructural transitions around a specific temperature at which the applied magnetic field induces a magnetostructural pha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy technology (Weinheim, Germany) Germany), 2018-08, Vol.6 (8), p.1397-1428
Hauptverfasser: Scheibel, Franziska, Gottschall, Tino, Taubel, Andreas, Fries, Maximilian, Skokov, Konstantin P., Terwey, Alexandra, Keune, Werner, Ollefs, Katharina, Wende, Heiko, Farle, Michael, Acet, Mehmet, Gutfleisch, Oliver, Gruner, Markus E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1428
container_issue 8
container_start_page 1397
container_title Energy technology (Weinheim, Germany)
container_volume 6
creator Scheibel, Franziska
Gottschall, Tino
Taubel, Andreas
Fries, Maximilian
Skokov, Konstantin P.
Terwey, Alexandra
Keune, Werner
Ollefs, Katharina
Wende, Heiko
Farle, Michael
Acet, Mehmet
Gutfleisch, Oliver
Gruner, Markus E.
description Magnetic refrigeration relies on a substantial entropy change in a magnetocaloric material when a magnetic field is applied. Such entropy changes are present at first‐order magnetostructural transitions around a specific temperature at which the applied magnetic field induces a magnetostructural phase transition and causes a conventional or inverse magnetocaloric effect (MCE). First‐order magnetostructural transitions show large effects, but involve transitional hysteresis, which is a loss source that hinders the reversibility of the adiabatic temperature change ΔTad. However, reversibility is required for the efficient operation of the heat pump. Thus, it is the mastering of that hysteresis that is the key challenge to advance magnetocaloric materials. We review the origin of the large MCE and of the hysteresis in the most promising first‐order magnetocaloric materials such as Ni–Mn‐based Heusler alloys, FeRh, La(FeSi)13‐based compounds, Mn3GaC antiperovskites, and Fe2P compounds. We discuss the microscopic contributions of the entropy change, the magnetic interactions, the effect of hysteresis on the reversible MCE, and the size‐ and time‐dependence of the MCE at magnetostructural transitions. Understanding hysteresis: Materials with magnetostructural phase transitions (MSPT) show a large magnetocaloric effect (MCE). The understanding of MSPT and its thermal hysteresis requires the knowledge about the electronic, magnetic, and lattice entropy contributions. In this Review, we provide an overview of the properties of MSPT in La–Fe–Si, Heusler alloys, Mn3GaC, and Fe2P‐type materials with respect to the MCE and its reversibility based on studies under static/dynamic conditions at micro‐ and mesoscopic scales.
doi_str_mv 10.1002/ente.201800264
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2090151702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090151702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4234-4f3d797db1578a4a840263e7eaed4250d5a4359400893bd1406f9b45f92819a33</originalsourceid><addsrcrecordid>eNqFkMtOAjEUhhujiQTZup7ENXh6Y9olIogJ6gbWTWemgyXDdGyHGHY8hE_ok1gyBpduzi3ff87Jj9AthhEGIPembs2IABaxGbML1CNYsiEjcnx5roW4RoMQtgCAgVMOtIfWi0NojTfBhuQxxk2duDJ50ZvatC7XlfM2j21ErK7C9_Fr7t0uedDhNDb5u65t2IWkdcmkaSqb69a6OtygqzLiZvCb-2g9n62mi-Hy7el5OlkOc0ZofKmkRSrTIsM8FZppweLz1KRGm4IRDgXXjHLJAISkWYEZjEuZMV5KIrDUlPbRXbe38e5jb0Krtm7v63hSEZCAOU6BRGrUUbl3IXhTqsbbnfYHhUGd3FMn99TZvSiQneDTVubwD61mr6vZn_YHxBtznQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090151702</pqid></control><display><type>article</type><title>Hysteresis Design of Magnetocaloric Materials—From Basic Mechanisms to Applications</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Scheibel, Franziska ; Gottschall, Tino ; Taubel, Andreas ; Fries, Maximilian ; Skokov, Konstantin P. ; Terwey, Alexandra ; Keune, Werner ; Ollefs, Katharina ; Wende, Heiko ; Farle, Michael ; Acet, Mehmet ; Gutfleisch, Oliver ; Gruner, Markus E.</creator><creatorcontrib>Scheibel, Franziska ; Gottschall, Tino ; Taubel, Andreas ; Fries, Maximilian ; Skokov, Konstantin P. ; Terwey, Alexandra ; Keune, Werner ; Ollefs, Katharina ; Wende, Heiko ; Farle, Michael ; Acet, Mehmet ; Gutfleisch, Oliver ; Gruner, Markus E.</creatorcontrib><description>Magnetic refrigeration relies on a substantial entropy change in a magnetocaloric material when a magnetic field is applied. Such entropy changes are present at first‐order magnetostructural transitions around a specific temperature at which the applied magnetic field induces a magnetostructural phase transition and causes a conventional or inverse magnetocaloric effect (MCE). First‐order magnetostructural transitions show large effects, but involve transitional hysteresis, which is a loss source that hinders the reversibility of the adiabatic temperature change ΔTad. However, reversibility is required for the efficient operation of the heat pump. Thus, it is the mastering of that hysteresis that is the key challenge to advance magnetocaloric materials. We review the origin of the large MCE and of the hysteresis in the most promising first‐order magnetocaloric materials such as Ni–Mn‐based Heusler alloys, FeRh, La(FeSi)13‐based compounds, Mn3GaC antiperovskites, and Fe2P compounds. We discuss the microscopic contributions of the entropy change, the magnetic interactions, the effect of hysteresis on the reversible MCE, and the size‐ and time‐dependence of the MCE at magnetostructural transitions. Understanding hysteresis: Materials with magnetostructural phase transitions (MSPT) show a large magnetocaloric effect (MCE). The understanding of MSPT and its thermal hysteresis requires the knowledge about the electronic, magnetic, and lattice entropy contributions. In this Review, we provide an overview of the properties of MSPT in La–Fe–Si, Heusler alloys, Mn3GaC, and Fe2P‐type materials with respect to the MCE and its reversibility based on studies under static/dynamic conditions at micro‐ and mesoscopic scales.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.201800264</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>energy conversion ; Entropy ; ferroic cooling ; Heat exchangers ; Heat pumps ; Heusler alloys ; Hysteresis ; Iron silicide ; Magnetic fields ; Magnetic materials ; Magnetism ; magnetocaloric effect ; magnetostructural transition ; Manganese ; Mastering ; Nickel ; Phase transitions ; Refrigeration ; solid-state refrigeration ; Temperature ; Time dependence</subject><ispartof>Energy technology (Weinheim, Germany), 2018-08, Vol.6 (8), p.1397-1428</ispartof><rights>2018 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4234-4f3d797db1578a4a840263e7eaed4250d5a4359400893bd1406f9b45f92819a33</citedby><cites>FETCH-LOGICAL-c4234-4f3d797db1578a4a840263e7eaed4250d5a4359400893bd1406f9b45f92819a33</cites><orcidid>0000-0002-9311-0975 ; 0000-0003-0844-2949 ; 0000-0002-2306-1258 ; 0000-0001-7981-0871 ; 0000-0003-4321-9021 ; 0000-0001-8021-3839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fente.201800264$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fente.201800264$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Scheibel, Franziska</creatorcontrib><creatorcontrib>Gottschall, Tino</creatorcontrib><creatorcontrib>Taubel, Andreas</creatorcontrib><creatorcontrib>Fries, Maximilian</creatorcontrib><creatorcontrib>Skokov, Konstantin P.</creatorcontrib><creatorcontrib>Terwey, Alexandra</creatorcontrib><creatorcontrib>Keune, Werner</creatorcontrib><creatorcontrib>Ollefs, Katharina</creatorcontrib><creatorcontrib>Wende, Heiko</creatorcontrib><creatorcontrib>Farle, Michael</creatorcontrib><creatorcontrib>Acet, Mehmet</creatorcontrib><creatorcontrib>Gutfleisch, Oliver</creatorcontrib><creatorcontrib>Gruner, Markus E.</creatorcontrib><title>Hysteresis Design of Magnetocaloric Materials—From Basic Mechanisms to Applications</title><title>Energy technology (Weinheim, Germany)</title><description>Magnetic refrigeration relies on a substantial entropy change in a magnetocaloric material when a magnetic field is applied. Such entropy changes are present at first‐order magnetostructural transitions around a specific temperature at which the applied magnetic field induces a magnetostructural phase transition and causes a conventional or inverse magnetocaloric effect (MCE). First‐order magnetostructural transitions show large effects, but involve transitional hysteresis, which is a loss source that hinders the reversibility of the adiabatic temperature change ΔTad. However, reversibility is required for the efficient operation of the heat pump. Thus, it is the mastering of that hysteresis that is the key challenge to advance magnetocaloric materials. We review the origin of the large MCE and of the hysteresis in the most promising first‐order magnetocaloric materials such as Ni–Mn‐based Heusler alloys, FeRh, La(FeSi)13‐based compounds, Mn3GaC antiperovskites, and Fe2P compounds. We discuss the microscopic contributions of the entropy change, the magnetic interactions, the effect of hysteresis on the reversible MCE, and the size‐ and time‐dependence of the MCE at magnetostructural transitions. Understanding hysteresis: Materials with magnetostructural phase transitions (MSPT) show a large magnetocaloric effect (MCE). The understanding of MSPT and its thermal hysteresis requires the knowledge about the electronic, magnetic, and lattice entropy contributions. In this Review, we provide an overview of the properties of MSPT in La–Fe–Si, Heusler alloys, Mn3GaC, and Fe2P‐type materials with respect to the MCE and its reversibility based on studies under static/dynamic conditions at micro‐ and mesoscopic scales.</description><subject>energy conversion</subject><subject>Entropy</subject><subject>ferroic cooling</subject><subject>Heat exchangers</subject><subject>Heat pumps</subject><subject>Heusler alloys</subject><subject>Hysteresis</subject><subject>Iron silicide</subject><subject>Magnetic fields</subject><subject>Magnetic materials</subject><subject>Magnetism</subject><subject>magnetocaloric effect</subject><subject>magnetostructural transition</subject><subject>Manganese</subject><subject>Mastering</subject><subject>Nickel</subject><subject>Phase transitions</subject><subject>Refrigeration</subject><subject>solid-state refrigeration</subject><subject>Temperature</subject><subject>Time dependence</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMtOAjEUhhujiQTZup7ENXh6Y9olIogJ6gbWTWemgyXDdGyHGHY8hE_ok1gyBpduzi3ff87Jj9AthhEGIPembs2IABaxGbML1CNYsiEjcnx5roW4RoMQtgCAgVMOtIfWi0NojTfBhuQxxk2duDJ50ZvatC7XlfM2j21ErK7C9_Fr7t0uedDhNDb5u65t2IWkdcmkaSqb69a6OtygqzLiZvCb-2g9n62mi-Hy7el5OlkOc0ZofKmkRSrTIsM8FZppweLz1KRGm4IRDgXXjHLJAISkWYEZjEuZMV5KIrDUlPbRXbe38e5jb0Krtm7v63hSEZCAOU6BRGrUUbl3IXhTqsbbnfYHhUGd3FMn99TZvSiQneDTVubwD61mr6vZn_YHxBtznQ</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Scheibel, Franziska</creator><creator>Gottschall, Tino</creator><creator>Taubel, Andreas</creator><creator>Fries, Maximilian</creator><creator>Skokov, Konstantin P.</creator><creator>Terwey, Alexandra</creator><creator>Keune, Werner</creator><creator>Ollefs, Katharina</creator><creator>Wende, Heiko</creator><creator>Farle, Michael</creator><creator>Acet, Mehmet</creator><creator>Gutfleisch, Oliver</creator><creator>Gruner, Markus E.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9311-0975</orcidid><orcidid>https://orcid.org/0000-0003-0844-2949</orcidid><orcidid>https://orcid.org/0000-0002-2306-1258</orcidid><orcidid>https://orcid.org/0000-0001-7981-0871</orcidid><orcidid>https://orcid.org/0000-0003-4321-9021</orcidid><orcidid>https://orcid.org/0000-0001-8021-3839</orcidid></search><sort><creationdate>201808</creationdate><title>Hysteresis Design of Magnetocaloric Materials—From Basic Mechanisms to Applications</title><author>Scheibel, Franziska ; Gottschall, Tino ; Taubel, Andreas ; Fries, Maximilian ; Skokov, Konstantin P. ; Terwey, Alexandra ; Keune, Werner ; Ollefs, Katharina ; Wende, Heiko ; Farle, Michael ; Acet, Mehmet ; Gutfleisch, Oliver ; Gruner, Markus E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4234-4f3d797db1578a4a840263e7eaed4250d5a4359400893bd1406f9b45f92819a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>energy conversion</topic><topic>Entropy</topic><topic>ferroic cooling</topic><topic>Heat exchangers</topic><topic>Heat pumps</topic><topic>Heusler alloys</topic><topic>Hysteresis</topic><topic>Iron silicide</topic><topic>Magnetic fields</topic><topic>Magnetic materials</topic><topic>Magnetism</topic><topic>magnetocaloric effect</topic><topic>magnetostructural transition</topic><topic>Manganese</topic><topic>Mastering</topic><topic>Nickel</topic><topic>Phase transitions</topic><topic>Refrigeration</topic><topic>solid-state refrigeration</topic><topic>Temperature</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheibel, Franziska</creatorcontrib><creatorcontrib>Gottschall, Tino</creatorcontrib><creatorcontrib>Taubel, Andreas</creatorcontrib><creatorcontrib>Fries, Maximilian</creatorcontrib><creatorcontrib>Skokov, Konstantin P.</creatorcontrib><creatorcontrib>Terwey, Alexandra</creatorcontrib><creatorcontrib>Keune, Werner</creatorcontrib><creatorcontrib>Ollefs, Katharina</creatorcontrib><creatorcontrib>Wende, Heiko</creatorcontrib><creatorcontrib>Farle, Michael</creatorcontrib><creatorcontrib>Acet, Mehmet</creatorcontrib><creatorcontrib>Gutfleisch, Oliver</creatorcontrib><creatorcontrib>Gruner, Markus E.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheibel, Franziska</au><au>Gottschall, Tino</au><au>Taubel, Andreas</au><au>Fries, Maximilian</au><au>Skokov, Konstantin P.</au><au>Terwey, Alexandra</au><au>Keune, Werner</au><au>Ollefs, Katharina</au><au>Wende, Heiko</au><au>Farle, Michael</au><au>Acet, Mehmet</au><au>Gutfleisch, Oliver</au><au>Gruner, Markus E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hysteresis Design of Magnetocaloric Materials—From Basic Mechanisms to Applications</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2018-08</date><risdate>2018</risdate><volume>6</volume><issue>8</issue><spage>1397</spage><epage>1428</epage><pages>1397-1428</pages><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>Magnetic refrigeration relies on a substantial entropy change in a magnetocaloric material when a magnetic field is applied. Such entropy changes are present at first‐order magnetostructural transitions around a specific temperature at which the applied magnetic field induces a magnetostructural phase transition and causes a conventional or inverse magnetocaloric effect (MCE). First‐order magnetostructural transitions show large effects, but involve transitional hysteresis, which is a loss source that hinders the reversibility of the adiabatic temperature change ΔTad. However, reversibility is required for the efficient operation of the heat pump. Thus, it is the mastering of that hysteresis that is the key challenge to advance magnetocaloric materials. We review the origin of the large MCE and of the hysteresis in the most promising first‐order magnetocaloric materials such as Ni–Mn‐based Heusler alloys, FeRh, La(FeSi)13‐based compounds, Mn3GaC antiperovskites, and Fe2P compounds. We discuss the microscopic contributions of the entropy change, the magnetic interactions, the effect of hysteresis on the reversible MCE, and the size‐ and time‐dependence of the MCE at magnetostructural transitions. Understanding hysteresis: Materials with magnetostructural phase transitions (MSPT) show a large magnetocaloric effect (MCE). The understanding of MSPT and its thermal hysteresis requires the knowledge about the electronic, magnetic, and lattice entropy contributions. In this Review, we provide an overview of the properties of MSPT in La–Fe–Si, Heusler alloys, Mn3GaC, and Fe2P‐type materials with respect to the MCE and its reversibility based on studies under static/dynamic conditions at micro‐ and mesoscopic scales.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.201800264</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-9311-0975</orcidid><orcidid>https://orcid.org/0000-0003-0844-2949</orcidid><orcidid>https://orcid.org/0000-0002-2306-1258</orcidid><orcidid>https://orcid.org/0000-0001-7981-0871</orcidid><orcidid>https://orcid.org/0000-0003-4321-9021</orcidid><orcidid>https://orcid.org/0000-0001-8021-3839</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-4288
ispartof Energy technology (Weinheim, Germany), 2018-08, Vol.6 (8), p.1397-1428
issn 2194-4288
2194-4296
language eng
recordid cdi_proquest_journals_2090151702
source Wiley Online Library Journals Frontfile Complete
subjects energy conversion
Entropy
ferroic cooling
Heat exchangers
Heat pumps
Heusler alloys
Hysteresis
Iron silicide
Magnetic fields
Magnetic materials
Magnetism
magnetocaloric effect
magnetostructural transition
Manganese
Mastering
Nickel
Phase transitions
Refrigeration
solid-state refrigeration
Temperature
Time dependence
title Hysteresis Design of Magnetocaloric Materials—From Basic Mechanisms to Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hysteresis%20Design%20of%20Magnetocaloric%20Materials%E2%80%94From%20Basic%20Mechanisms%20to%20Applications&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Scheibel,%20Franziska&rft.date=2018-08&rft.volume=6&rft.issue=8&rft.spage=1397&rft.epage=1428&rft.pages=1397-1428&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.201800264&rft_dat=%3Cproquest_cross%3E2090151702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090151702&rft_id=info:pmid/&rfr_iscdi=true