Hidden Noise Structure and Random Matrix Models of Stock Correlations

We find a novel correlation structure in the residual noise of stock market returns that is remarkably linked to the composition and stability of the top few significant factors driving the returns, and moreover indicates that the noise band is composed of multiple subbands that do not fully mix. Ou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2009-12
Hauptverfasser: Dimov, Ivailo I, Kolm, Petter N, Maclin, Lee, Shiber, Dan Y C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dimov, Ivailo I
Kolm, Petter N
Maclin, Lee
Shiber, Dan Y C
description We find a novel correlation structure in the residual noise of stock market returns that is remarkably linked to the composition and stability of the top few significant factors driving the returns, and moreover indicates that the noise band is composed of multiple subbands that do not fully mix. Our findings allow us to construct effective generalized random matrix theory market models that are closely related to correlation and eigenvector clustering. We show how to use these models in a simulation that incorporates heavy tails. Finally, we demonstrate how a subtle purely stationary risk estimation bias can arise in the conventional cleaning prescription.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2090057562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090057562</sourcerecordid><originalsourceid>FETCH-proquest_journals_20900575623</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMgWLT_8MC5EBPT6lwqXeqg7hKaFFJrnuYl4OfbwQ9wuRvuFiwTUu6Kw16IFcuJRs65KCuhlMxY0zpjrIczOrJwjSH1MQUL2hu4zMAndDoG94EOjZ0IcJgv7B9QYwh20tGhpw1bDnoim_-8ZttTc6vb4hXwnSzF-4gp-DndBT9yripVCvnf9QVG3zqI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090057562</pqid></control><display><type>article</type><title>Hidden Noise Structure and Random Matrix Models of Stock Correlations</title><source>Free E- Journals</source><creator>Dimov, Ivailo I ; Kolm, Petter N ; Maclin, Lee ; Shiber, Dan Y C</creator><creatorcontrib>Dimov, Ivailo I ; Kolm, Petter N ; Maclin, Lee ; Shiber, Dan Y C</creatorcontrib><description>We find a novel correlation structure in the residual noise of stock market returns that is remarkably linked to the composition and stability of the top few significant factors driving the returns, and moreover indicates that the noise band is composed of multiple subbands that do not fully mix. Our findings allow us to construct effective generalized random matrix theory market models that are closely related to correlation and eigenvector clustering. We show how to use these models in a simulation that incorporates heavy tails. Finally, we demonstrate how a subtle purely stationary risk estimation bias can arise in the conventional cleaning prescription.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clustering ; Computer simulation ; Correlation ; Eigenvectors ; Markets ; Matrix theory ; Noise</subject><ispartof>arXiv.org, 2009-12</ispartof><rights>2009. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Dimov, Ivailo I</creatorcontrib><creatorcontrib>Kolm, Petter N</creatorcontrib><creatorcontrib>Maclin, Lee</creatorcontrib><creatorcontrib>Shiber, Dan Y C</creatorcontrib><title>Hidden Noise Structure and Random Matrix Models of Stock Correlations</title><title>arXiv.org</title><description>We find a novel correlation structure in the residual noise of stock market returns that is remarkably linked to the composition and stability of the top few significant factors driving the returns, and moreover indicates that the noise band is composed of multiple subbands that do not fully mix. Our findings allow us to construct effective generalized random matrix theory market models that are closely related to correlation and eigenvector clustering. We show how to use these models in a simulation that incorporates heavy tails. Finally, we demonstrate how a subtle purely stationary risk estimation bias can arise in the conventional cleaning prescription.</description><subject>Clustering</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Eigenvectors</subject><subject>Markets</subject><subject>Matrix theory</subject><subject>Noise</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNirEKwjAUAIMgWLT_8MC5EBPT6lwqXeqg7hKaFFJrnuYl4OfbwQ9wuRvuFiwTUu6Kw16IFcuJRs65KCuhlMxY0zpjrIczOrJwjSH1MQUL2hu4zMAndDoG94EOjZ0IcJgv7B9QYwh20tGhpw1bDnoim_-8ZttTc6vb4hXwnSzF-4gp-DndBT9yripVCvnf9QVG3zqI</recordid><startdate>20091215</startdate><enddate>20091215</enddate><creator>Dimov, Ivailo I</creator><creator>Kolm, Petter N</creator><creator>Maclin, Lee</creator><creator>Shiber, Dan Y C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20091215</creationdate><title>Hidden Noise Structure and Random Matrix Models of Stock Correlations</title><author>Dimov, Ivailo I ; Kolm, Petter N ; Maclin, Lee ; Shiber, Dan Y C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20900575623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Clustering</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Eigenvectors</topic><topic>Markets</topic><topic>Matrix theory</topic><topic>Noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Dimov, Ivailo I</creatorcontrib><creatorcontrib>Kolm, Petter N</creatorcontrib><creatorcontrib>Maclin, Lee</creatorcontrib><creatorcontrib>Shiber, Dan Y C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimov, Ivailo I</au><au>Kolm, Petter N</au><au>Maclin, Lee</au><au>Shiber, Dan Y C</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Hidden Noise Structure and Random Matrix Models of Stock Correlations</atitle><jtitle>arXiv.org</jtitle><date>2009-12-15</date><risdate>2009</risdate><eissn>2331-8422</eissn><abstract>We find a novel correlation structure in the residual noise of stock market returns that is remarkably linked to the composition and stability of the top few significant factors driving the returns, and moreover indicates that the noise band is composed of multiple subbands that do not fully mix. Our findings allow us to construct effective generalized random matrix theory market models that are closely related to correlation and eigenvector clustering. We show how to use these models in a simulation that incorporates heavy tails. Finally, we demonstrate how a subtle purely stationary risk estimation bias can arise in the conventional cleaning prescription.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2009-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2090057562
source Free E- Journals
subjects Clustering
Computer simulation
Correlation
Eigenvectors
Markets
Matrix theory
Noise
title Hidden Noise Structure and Random Matrix Models of Stock Correlations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A54%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Hidden%20Noise%20Structure%20and%20Random%20Matrix%20Models%20of%20Stock%20Correlations&rft.jtitle=arXiv.org&rft.au=Dimov,%20Ivailo%20I&rft.date=2009-12-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2090057562%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090057562&rft_id=info:pmid/&rfr_iscdi=true