FTIR-PAS coupled to partial least squares for prediction of ash content, volatile matter, fixed carbon and calorific value of coal

[Display omitted] •Prective model for properties of coal using FT-IR PAS and PLS are proposed.•Tests and statistical parameters indicate good performance of the models.•An alternative strategy to determine complexity and selection models is presented. Fourier Transform Infrared Photoacoustic Spectro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2018-08, Vol.226, p.536-544
Hauptverfasser: Román Gómez, Yesid, Cabanzo Hernández, Rafael, Guerrero, Jáder Enrique, Mejía-Ospino, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 544
container_issue
container_start_page 536
container_title Fuel (Guildford)
container_volume 226
creator Román Gómez, Yesid
Cabanzo Hernández, Rafael
Guerrero, Jáder Enrique
Mejía-Ospino, Enrique
description [Display omitted] •Prective model for properties of coal using FT-IR PAS and PLS are proposed.•Tests and statistical parameters indicate good performance of the models.•An alternative strategy to determine complexity and selection models is presented. Fourier Transform Infrared Photoacoustic Spectroscopy (FT-IR PAS) and multivariate calibration using partial least squares (PLS) has been coupled for the development of predictive models of ash content, volatile matter, fixed carbon and calorific value of coal samples from several mines of Colombia. In the chemometric approach, a novel alternative is proposed to define the complexity and the selection of the models. According to tests and statistical criteria, at a 95% confidence level, the selected models demonstrate their linear character and a true correlation between the reference values and the predicted values. Results provide standard error of cross-validation (SECV) of 1.22 wt%, 0.78 wt%, 1.08 wt% and 0.75 MJ kg−1 predicting ash, volatile matter (VM), fixed carbon (FC) and calorific value, respectively.
doi_str_mv 10.1016/j.fuel.2018.04.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2089868225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001623611830663X</els_id><sourcerecordid>2089868225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-8a0771e4bdd588bc69c327c09c8a482cc88d177ccb8bb28c1a28168d3f26b7ac3</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVpodu0X6AnQa7xRpK91izkEkL-QSChSc5CHo-JFsVyJHlJr_3kldmcAwMzDO-9GX6M_ZZiLYVsT3frYSa_VkLCWjSlxBe2kqDrSstN_ZWtRFFVqm7ld_YjpZ0QQsOmWbF_V0-3f6qH80eOYZ489TwHPtmYnfXck02Zp7fZRkp8CJFPkXqH2YWRh4Hb9FJsY6Yxn_B98DY7T_zV5kzxhA_uvcShjV1R23EZfYhucMj31s-0JGCw_if7Nlif6NdHP2LPV5dPFzfV3f317cX5XYW1glyBFVpLarq-3wB02G7LXqPYItgGFCJAL7VG7KDrFKC0CmQLfT2ottMW6yN2fMidYnibKWWzC3Mcy0mjBGyhBaU2RaUOKowhpUiDmaJ7tfGvkcIsrM3OLKzNwtqIppQoprODicr_e0fRJHQ0YoEVCbPpg_vM_h-N6IkH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089868225</pqid></control><display><type>article</type><title>FTIR-PAS coupled to partial least squares for prediction of ash content, volatile matter, fixed carbon and calorific value of coal</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Román Gómez, Yesid ; Cabanzo Hernández, Rafael ; Guerrero, Jáder Enrique ; Mejía-Ospino, Enrique</creator><creatorcontrib>Román Gómez, Yesid ; Cabanzo Hernández, Rafael ; Guerrero, Jáder Enrique ; Mejía-Ospino, Enrique</creatorcontrib><description>[Display omitted] •Prective model for properties of coal using FT-IR PAS and PLS are proposed.•Tests and statistical parameters indicate good performance of the models.•An alternative strategy to determine complexity and selection models is presented. Fourier Transform Infrared Photoacoustic Spectroscopy (FT-IR PAS) and multivariate calibration using partial least squares (PLS) has been coupled for the development of predictive models of ash content, volatile matter, fixed carbon and calorific value of coal samples from several mines of Colombia. In the chemometric approach, a novel alternative is proposed to define the complexity and the selection of the models. According to tests and statistical criteria, at a 95% confidence level, the selected models demonstrate their linear character and a true correlation between the reference values and the predicted values. Results provide standard error of cross-validation (SECV) of 1.22 wt%, 0.78 wt%, 1.08 wt% and 0.75 MJ kg−1 predicting ash, volatile matter (VM), fixed carbon (FC) and calorific value, respectively.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2018.04.040</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Ashes ; Calibration ; Calorific value ; Carbon ; Coal ; Coal mines ; Confidence intervals ; Fourier transforms ; Infrared spectroscopy ; Least squares ; Mathematical models ; Multivariate calibration ; Photoacoustic spectroscopy ; Prediction models ; Proximate analysis ; Spectrum analysis ; Standard error ; Statistical analysis ; Statistical methods ; Studies</subject><ispartof>Fuel (Guildford), 2018-08, Vol.226, p.536-544</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-8a0771e4bdd588bc69c327c09c8a482cc88d177ccb8bb28c1a28168d3f26b7ac3</citedby><cites>FETCH-LOGICAL-c328t-8a0771e4bdd588bc69c327c09c8a482cc88d177ccb8bb28c1a28168d3f26b7ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2018.04.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Román Gómez, Yesid</creatorcontrib><creatorcontrib>Cabanzo Hernández, Rafael</creatorcontrib><creatorcontrib>Guerrero, Jáder Enrique</creatorcontrib><creatorcontrib>Mejía-Ospino, Enrique</creatorcontrib><title>FTIR-PAS coupled to partial least squares for prediction of ash content, volatile matter, fixed carbon and calorific value of coal</title><title>Fuel (Guildford)</title><description>[Display omitted] •Prective model for properties of coal using FT-IR PAS and PLS are proposed.•Tests and statistical parameters indicate good performance of the models.•An alternative strategy to determine complexity and selection models is presented. Fourier Transform Infrared Photoacoustic Spectroscopy (FT-IR PAS) and multivariate calibration using partial least squares (PLS) has been coupled for the development of predictive models of ash content, volatile matter, fixed carbon and calorific value of coal samples from several mines of Colombia. In the chemometric approach, a novel alternative is proposed to define the complexity and the selection of the models. According to tests and statistical criteria, at a 95% confidence level, the selected models demonstrate their linear character and a true correlation between the reference values and the predicted values. Results provide standard error of cross-validation (SECV) of 1.22 wt%, 0.78 wt%, 1.08 wt% and 0.75 MJ kg−1 predicting ash, volatile matter (VM), fixed carbon (FC) and calorific value, respectively.</description><subject>Ashes</subject><subject>Calibration</subject><subject>Calorific value</subject><subject>Carbon</subject><subject>Coal</subject><subject>Coal mines</subject><subject>Confidence intervals</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Least squares</subject><subject>Mathematical models</subject><subject>Multivariate calibration</subject><subject>Photoacoustic spectroscopy</subject><subject>Prediction models</subject><subject>Proximate analysis</subject><subject>Spectrum analysis</subject><subject>Standard error</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Studies</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVpodu0X6AnQa7xRpK91izkEkL-QSChSc5CHo-JFsVyJHlJr_3kldmcAwMzDO-9GX6M_ZZiLYVsT3frYSa_VkLCWjSlxBe2kqDrSstN_ZWtRFFVqm7ld_YjpZ0QQsOmWbF_V0-3f6qH80eOYZ489TwHPtmYnfXck02Zp7fZRkp8CJFPkXqH2YWRh4Hb9FJsY6Yxn_B98DY7T_zV5kzxhA_uvcShjV1R23EZfYhucMj31s-0JGCw_if7Nlif6NdHP2LPV5dPFzfV3f317cX5XYW1glyBFVpLarq-3wB02G7LXqPYItgGFCJAL7VG7KDrFKC0CmQLfT2ottMW6yN2fMidYnibKWWzC3Mcy0mjBGyhBaU2RaUOKowhpUiDmaJ7tfGvkcIsrM3OLKzNwtqIppQoprODicr_e0fRJHQ0YoEVCbPpg_vM_h-N6IkH</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Román Gómez, Yesid</creator><creator>Cabanzo Hernández, Rafael</creator><creator>Guerrero, Jáder Enrique</creator><creator>Mejía-Ospino, Enrique</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20180815</creationdate><title>FTIR-PAS coupled to partial least squares for prediction of ash content, volatile matter, fixed carbon and calorific value of coal</title><author>Román Gómez, Yesid ; Cabanzo Hernández, Rafael ; Guerrero, Jáder Enrique ; Mejía-Ospino, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-8a0771e4bdd588bc69c327c09c8a482cc88d177ccb8bb28c1a28168d3f26b7ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ashes</topic><topic>Calibration</topic><topic>Calorific value</topic><topic>Carbon</topic><topic>Coal</topic><topic>Coal mines</topic><topic>Confidence intervals</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Least squares</topic><topic>Mathematical models</topic><topic>Multivariate calibration</topic><topic>Photoacoustic spectroscopy</topic><topic>Prediction models</topic><topic>Proximate analysis</topic><topic>Spectrum analysis</topic><topic>Standard error</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Román Gómez, Yesid</creatorcontrib><creatorcontrib>Cabanzo Hernández, Rafael</creatorcontrib><creatorcontrib>Guerrero, Jáder Enrique</creatorcontrib><creatorcontrib>Mejía-Ospino, Enrique</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Román Gómez, Yesid</au><au>Cabanzo Hernández, Rafael</au><au>Guerrero, Jáder Enrique</au><au>Mejía-Ospino, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FTIR-PAS coupled to partial least squares for prediction of ash content, volatile matter, fixed carbon and calorific value of coal</atitle><jtitle>Fuel (Guildford)</jtitle><date>2018-08-15</date><risdate>2018</risdate><volume>226</volume><spage>536</spage><epage>544</epage><pages>536-544</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted] •Prective model for properties of coal using FT-IR PAS and PLS are proposed.•Tests and statistical parameters indicate good performance of the models.•An alternative strategy to determine complexity and selection models is presented. Fourier Transform Infrared Photoacoustic Spectroscopy (FT-IR PAS) and multivariate calibration using partial least squares (PLS) has been coupled for the development of predictive models of ash content, volatile matter, fixed carbon and calorific value of coal samples from several mines of Colombia. In the chemometric approach, a novel alternative is proposed to define the complexity and the selection of the models. According to tests and statistical criteria, at a 95% confidence level, the selected models demonstrate their linear character and a true correlation between the reference values and the predicted values. Results provide standard error of cross-validation (SECV) of 1.22 wt%, 0.78 wt%, 1.08 wt% and 0.75 MJ kg−1 predicting ash, volatile matter (VM), fixed carbon (FC) and calorific value, respectively.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2018.04.040</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2018-08, Vol.226, p.536-544
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2089868225
source Elsevier ScienceDirect Journals Complete
subjects Ashes
Calibration
Calorific value
Carbon
Coal
Coal mines
Confidence intervals
Fourier transforms
Infrared spectroscopy
Least squares
Mathematical models
Multivariate calibration
Photoacoustic spectroscopy
Prediction models
Proximate analysis
Spectrum analysis
Standard error
Statistical analysis
Statistical methods
Studies
title FTIR-PAS coupled to partial least squares for prediction of ash content, volatile matter, fixed carbon and calorific value of coal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FTIR-PAS%20coupled%20to%20partial%20least%20squares%20for%20prediction%20of%20ash%20content,%20volatile%20matter,%20fixed%20carbon%20and%20calorific%20value%20of%20coal&rft.jtitle=Fuel%20(Guildford)&rft.au=Rom%C3%A1n%20G%C3%B3mez,%20Yesid&rft.date=2018-08-15&rft.volume=226&rft.spage=536&rft.epage=544&rft.pages=536-544&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2018.04.040&rft_dat=%3Cproquest_cross%3E2089868225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089868225&rft_id=info:pmid/&rft_els_id=S001623611830663X&rfr_iscdi=true