Environmentally relevant manganese overexposure alters neural cell morphology and differentiation in vitro
Manganese (Mn) is a trace metal and micronutrient that is necessary for neurological function. Because of its ability to cross the blood brain barrier, excessive amounts of Mn are neurotoxic and can lead to a neurological disorder, manganism. Environmental overexposure to Mn correlates with impaired...
Gespeichert in:
Veröffentlicht in: | Toxicology in vitro 2018-08, Vol.50, p.22-28 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | |
container_start_page | 22 |
container_title | Toxicology in vitro |
container_volume | 50 |
creator | Parsons-White, Amy B. Spitzer, Nadja |
description | Manganese (Mn) is a trace metal and micronutrient that is necessary for neurological function. Because of its ability to cross the blood brain barrier, excessive amounts of Mn are neurotoxic and can lead to a neurological disorder, manganism. Environmental overexposure to Mn correlates with impaired cognitive development in children. Though symptoms of manganism and overexposure are well defined, the changes in cellular mechanisms underlying these symptoms are not fully understood. We used cultured adult neural stem cells (NSCs) from young adult rats as an accessible model to investigate the effect of Mn on cellular mechanisms underlying neural differentiation. Concentrations of Mn below current EPA limits caused a dose- and time-dependent collapse of neurites and restructuring of cellular morphology. This effect was confirmed in B35 neuroblastoma cells. These findings indicate that Mn alters cytoskeleton dynamics during differentiation. In addition, Mn overexposure caused downregulation of DCX, a neuronal migration marker, and GFAP, a neural stem cell and astrocyte marker, in NSCs. We conclude that environmentally relevant concentrations of Mn impair cytoskeletal structure and morphology, and may impair differentiation in NSCs. These effects of Mn overexposure on brain cell function could underlie manganism and neurocognitive and developmental defects associated with environmental Mn overexposure.
•Manganese promotes cytoskeletal reorganization in cultured neural cells.•Inhibition of neurite outgrowth in Mn overexposure is comparable to colchicine.•Environmentally relevant Mn overexposure results in significant cellular changes.•This may underlie Mn-induced neurobehavioral defects. |
doi_str_mv | 10.1016/j.tiv.2018.02.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2089735322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0887233318300614</els_id><sourcerecordid>2089735322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-f4d9322ae4b723be1247b4b067db82560a40d09549e3816d8c505484f066235b3</originalsourceid><addsrcrecordid>eNp9kM1u1DAURi1ERYfCA7BBllgnXNv5ccQKVW1BqsSmrC0nvimOHHuwnYh5-7qawpKVN-c7Vz6EfGBQM2Dd56XOdq85MFkDr4G1r8iByX6oBOv71-QAUvYVF0JckrcpLQDQSg5vyCUfGtlxNhzIcuN3G4Nf0Wft3IlGdLhrn-mq_aP2mJCGHSP-OYa0RaTaZYyJetyidnRC5-ga4vFXcOHxRLU31Nh5LgOfrc42eGo93W2O4R25mLVL-P7lvSI_b28err9V9z_uvl9_va8mIVmu5sYMgnONzdhzMSLjTT82I3S9GSVvO9ANGBjaZsDCd0ZOLbSNbGboOi7aUVyRT2fvMYbfG6aslrBFX04qDnLoRVv0hWJnaoohpYizOka76nhSDNRzXbWoUlc911XAValbNh9fzNu4ovm3-JuzAF_OAJb_7RajSpNFP6GxEaesTLD_0T8BsZyMEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089735322</pqid></control><display><type>article</type><title>Environmentally relevant manganese overexposure alters neural cell morphology and differentiation in vitro</title><source>Access via ScienceDirect (Elsevier)</source><creator>Parsons-White, Amy B. ; Spitzer, Nadja</creator><creatorcontrib>Parsons-White, Amy B. ; Spitzer, Nadja</creatorcontrib><description>Manganese (Mn) is a trace metal and micronutrient that is necessary for neurological function. Because of its ability to cross the blood brain barrier, excessive amounts of Mn are neurotoxic and can lead to a neurological disorder, manganism. Environmental overexposure to Mn correlates with impaired cognitive development in children. Though symptoms of manganism and overexposure are well defined, the changes in cellular mechanisms underlying these symptoms are not fully understood. We used cultured adult neural stem cells (NSCs) from young adult rats as an accessible model to investigate the effect of Mn on cellular mechanisms underlying neural differentiation. Concentrations of Mn below current EPA limits caused a dose- and time-dependent collapse of neurites and restructuring of cellular morphology. This effect was confirmed in B35 neuroblastoma cells. These findings indicate that Mn alters cytoskeleton dynamics during differentiation. In addition, Mn overexposure caused downregulation of DCX, a neuronal migration marker, and GFAP, a neural stem cell and astrocyte marker, in NSCs. We conclude that environmentally relevant concentrations of Mn impair cytoskeletal structure and morphology, and may impair differentiation in NSCs. These effects of Mn overexposure on brain cell function could underlie manganism and neurocognitive and developmental defects associated with environmental Mn overexposure.
•Manganese promotes cytoskeletal reorganization in cultured neural cells.•Inhibition of neurite outgrowth in Mn overexposure is comparable to colchicine.•Environmentally relevant Mn overexposure results in significant cellular changes.•This may underlie Mn-induced neurobehavioral defects.</description><identifier>ISSN: 0887-2333</identifier><identifier>EISSN: 1879-3177</identifier><identifier>DOI: 10.1016/j.tiv.2018.02.015</identifier><identifier>PMID: 29486219</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adult neural stem cell ; Axons ; Blood-brain barrier ; Brain ; Cell cycle ; Cell migration ; Cell morphology ; Children ; Cognition ; Cognitive ability ; Cytology ; Cytoskeleton ; Differentiation ; Doublecortin protein ; Emerging environmental contaminant ; Glial fibrillary acidic protein ; Manganese ; Manganese compounds ; Manganism ; Morphology ; Neural stem cells ; Neuroblastoma ; Neuroblasts ; Neurogenesis ; Neurotoxicity ; Stem cells ; Time dependence ; Toxicology</subject><ispartof>Toxicology in vitro, 2018-08, Vol.50, p.22-28</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Science Ltd. Aug 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-f4d9322ae4b723be1247b4b067db82560a40d09549e3816d8c505484f066235b3</citedby><cites>FETCH-LOGICAL-c381t-f4d9322ae4b723be1247b4b067db82560a40d09549e3816d8c505484f066235b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tiv.2018.02.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29486219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parsons-White, Amy B.</creatorcontrib><creatorcontrib>Spitzer, Nadja</creatorcontrib><title>Environmentally relevant manganese overexposure alters neural cell morphology and differentiation in vitro</title><title>Toxicology in vitro</title><addtitle>Toxicol In Vitro</addtitle><description>Manganese (Mn) is a trace metal and micronutrient that is necessary for neurological function. Because of its ability to cross the blood brain barrier, excessive amounts of Mn are neurotoxic and can lead to a neurological disorder, manganism. Environmental overexposure to Mn correlates with impaired cognitive development in children. Though symptoms of manganism and overexposure are well defined, the changes in cellular mechanisms underlying these symptoms are not fully understood. We used cultured adult neural stem cells (NSCs) from young adult rats as an accessible model to investigate the effect of Mn on cellular mechanisms underlying neural differentiation. Concentrations of Mn below current EPA limits caused a dose- and time-dependent collapse of neurites and restructuring of cellular morphology. This effect was confirmed in B35 neuroblastoma cells. These findings indicate that Mn alters cytoskeleton dynamics during differentiation. In addition, Mn overexposure caused downregulation of DCX, a neuronal migration marker, and GFAP, a neural stem cell and astrocyte marker, in NSCs. We conclude that environmentally relevant concentrations of Mn impair cytoskeletal structure and morphology, and may impair differentiation in NSCs. These effects of Mn overexposure on brain cell function could underlie manganism and neurocognitive and developmental defects associated with environmental Mn overexposure.
•Manganese promotes cytoskeletal reorganization in cultured neural cells.•Inhibition of neurite outgrowth in Mn overexposure is comparable to colchicine.•Environmentally relevant Mn overexposure results in significant cellular changes.•This may underlie Mn-induced neurobehavioral defects.</description><subject>Adult neural stem cell</subject><subject>Axons</subject><subject>Blood-brain barrier</subject><subject>Brain</subject><subject>Cell cycle</subject><subject>Cell migration</subject><subject>Cell morphology</subject><subject>Children</subject><subject>Cognition</subject><subject>Cognitive ability</subject><subject>Cytology</subject><subject>Cytoskeleton</subject><subject>Differentiation</subject><subject>Doublecortin protein</subject><subject>Emerging environmental contaminant</subject><subject>Glial fibrillary acidic protein</subject><subject>Manganese</subject><subject>Manganese compounds</subject><subject>Manganism</subject><subject>Morphology</subject><subject>Neural stem cells</subject><subject>Neuroblastoma</subject><subject>Neuroblasts</subject><subject>Neurogenesis</subject><subject>Neurotoxicity</subject><subject>Stem cells</subject><subject>Time dependence</subject><subject>Toxicology</subject><issn>0887-2333</issn><issn>1879-3177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u1DAURi1ERYfCA7BBllgnXNv5ccQKVW1BqsSmrC0nvimOHHuwnYh5-7qawpKVN-c7Vz6EfGBQM2Dd56XOdq85MFkDr4G1r8iByX6oBOv71-QAUvYVF0JckrcpLQDQSg5vyCUfGtlxNhzIcuN3G4Nf0Wft3IlGdLhrn-mq_aP2mJCGHSP-OYa0RaTaZYyJetyidnRC5-ga4vFXcOHxRLU31Nh5LgOfrc42eGo93W2O4R25mLVL-P7lvSI_b28err9V9z_uvl9_va8mIVmu5sYMgnONzdhzMSLjTT82I3S9GSVvO9ANGBjaZsDCd0ZOLbSNbGboOi7aUVyRT2fvMYbfG6aslrBFX04qDnLoRVv0hWJnaoohpYizOka76nhSDNRzXbWoUlc911XAValbNh9fzNu4ovm3-JuzAF_OAJb_7RajSpNFP6GxEaesTLD_0T8BsZyMEQ</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Parsons-White, Amy B.</creator><creator>Spitzer, Nadja</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>20180801</creationdate><title>Environmentally relevant manganese overexposure alters neural cell morphology and differentiation in vitro</title><author>Parsons-White, Amy B. ; Spitzer, Nadja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-f4d9322ae4b723be1247b4b067db82560a40d09549e3816d8c505484f066235b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult neural stem cell</topic><topic>Axons</topic><topic>Blood-brain barrier</topic><topic>Brain</topic><topic>Cell cycle</topic><topic>Cell migration</topic><topic>Cell morphology</topic><topic>Children</topic><topic>Cognition</topic><topic>Cognitive ability</topic><topic>Cytology</topic><topic>Cytoskeleton</topic><topic>Differentiation</topic><topic>Doublecortin protein</topic><topic>Emerging environmental contaminant</topic><topic>Glial fibrillary acidic protein</topic><topic>Manganese</topic><topic>Manganese compounds</topic><topic>Manganism</topic><topic>Morphology</topic><topic>Neural stem cells</topic><topic>Neuroblastoma</topic><topic>Neuroblasts</topic><topic>Neurogenesis</topic><topic>Neurotoxicity</topic><topic>Stem cells</topic><topic>Time dependence</topic><topic>Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parsons-White, Amy B.</creatorcontrib><creatorcontrib>Spitzer, Nadja</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Toxicology in vitro</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parsons-White, Amy B.</au><au>Spitzer, Nadja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmentally relevant manganese overexposure alters neural cell morphology and differentiation in vitro</atitle><jtitle>Toxicology in vitro</jtitle><addtitle>Toxicol In Vitro</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>50</volume><spage>22</spage><epage>28</epage><pages>22-28</pages><issn>0887-2333</issn><eissn>1879-3177</eissn><abstract>Manganese (Mn) is a trace metal and micronutrient that is necessary for neurological function. Because of its ability to cross the blood brain barrier, excessive amounts of Mn are neurotoxic and can lead to a neurological disorder, manganism. Environmental overexposure to Mn correlates with impaired cognitive development in children. Though symptoms of manganism and overexposure are well defined, the changes in cellular mechanisms underlying these symptoms are not fully understood. We used cultured adult neural stem cells (NSCs) from young adult rats as an accessible model to investigate the effect of Mn on cellular mechanisms underlying neural differentiation. Concentrations of Mn below current EPA limits caused a dose- and time-dependent collapse of neurites and restructuring of cellular morphology. This effect was confirmed in B35 neuroblastoma cells. These findings indicate that Mn alters cytoskeleton dynamics during differentiation. In addition, Mn overexposure caused downregulation of DCX, a neuronal migration marker, and GFAP, a neural stem cell and astrocyte marker, in NSCs. We conclude that environmentally relevant concentrations of Mn impair cytoskeletal structure and morphology, and may impair differentiation in NSCs. These effects of Mn overexposure on brain cell function could underlie manganism and neurocognitive and developmental defects associated with environmental Mn overexposure.
•Manganese promotes cytoskeletal reorganization in cultured neural cells.•Inhibition of neurite outgrowth in Mn overexposure is comparable to colchicine.•Environmentally relevant Mn overexposure results in significant cellular changes.•This may underlie Mn-induced neurobehavioral defects.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29486219</pmid><doi>10.1016/j.tiv.2018.02.015</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-2333 |
ispartof | Toxicology in vitro, 2018-08, Vol.50, p.22-28 |
issn | 0887-2333 1879-3177 |
language | eng |
recordid | cdi_proquest_journals_2089735322 |
source | Access via ScienceDirect (Elsevier) |
subjects | Adult neural stem cell Axons Blood-brain barrier Brain Cell cycle Cell migration Cell morphology Children Cognition Cognitive ability Cytology Cytoskeleton Differentiation Doublecortin protein Emerging environmental contaminant Glial fibrillary acidic protein Manganese Manganese compounds Manganism Morphology Neural stem cells Neuroblastoma Neuroblasts Neurogenesis Neurotoxicity Stem cells Time dependence Toxicology |
title | Environmentally relevant manganese overexposure alters neural cell morphology and differentiation in vitro |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmentally%20relevant%20manganese%20overexposure%20alters%20neural%20cell%20morphology%20and%20differentiation%20in%20vitro&rft.jtitle=Toxicology%20in%20vitro&rft.au=Parsons-White,%20Amy%20B.&rft.date=2018-08-01&rft.volume=50&rft.spage=22&rft.epage=28&rft.pages=22-28&rft.issn=0887-2333&rft.eissn=1879-3177&rft_id=info:doi/10.1016/j.tiv.2018.02.015&rft_dat=%3Cproquest_cross%3E2089735322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089735322&rft_id=info:pmid/29486219&rft_els_id=S0887233318300614&rfr_iscdi=true |