Sets of refined inertias of zero–nonzero patterns
A set Hn⁎ of refined inertias for zero–nonzero patterns is introduced that is analogous to the set Hn previously considered for sign patterns. For n=3 and 4, a complete characterization of irreducible zero–nonzero patterns that allow or require Hn⁎ is given, and each zero–nonzero pattern that allows...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2017-03, Vol.516, p.243-263 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 263 |
---|---|
container_issue | |
container_start_page | 243 |
container_title | Linear algebra and its applications |
container_volume | 516 |
creator | Berliner, Adam H. Olesky, D.D. van den Driessche, P. |
description | A set Hn⁎ of refined inertias for zero–nonzero patterns is introduced that is analogous to the set Hn previously considered for sign patterns. For n=3 and 4, a complete characterization of irreducible zero–nonzero patterns that allow or require Hn⁎ is given, and each zero–nonzero pattern that allows Hn⁎ has a signing that allows Hn. In contrast, for n≥5 a family of irreducible zero–nonzero patterns is given that allows Hn⁎ but for which no one signing allows Hn. |
doi_str_mv | 10.1016/j.laa.2016.11.040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2089730268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002437951630578X</els_id><sourcerecordid>2089730268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-f21b82e41a29feb8267dd122777c2bb402de06f2cf32808da721444c5955cfaf3</originalsourceid><addsrcrecordid>eNp9kM1KxDAQx4MouK4-gLeC59aZadqkeJLFLxA8qOeQTSfQsrZr0hX05Dv4hj6JWdezl5k_w_zn4yfEKUKBgPV5X6ysLSjJArEACXtihlqVOeqq3hczAJJ5qZrqUBzF2AOAVEAzUT7yFLPRZ4F9N3CbpRCmzv7WPjiM359fwzhsVba208RhiMfiwNtV5JO_PBfP11dPi9v8_uHmbnF5n7uy1lPuCZeaWKKlxnOStWpbJFJKOVouJVDLUHtyviQNurWKUErpqqaqnLe-nIuz3dx1GF83HCfTj5swpJWGQDeqBKp16sJdlwtjjOkNsw7diw3vBsFs2ZjeJDZmy8YgmsQmeS52Hk7nv3UcTHQdD47bLrCbTDt2_7h_AC3ja_Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089730268</pqid></control><display><type>article</type><title>Sets of refined inertias of zero–nonzero patterns</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Berliner, Adam H. ; Olesky, D.D. ; van den Driessche, P.</creator><creatorcontrib>Berliner, Adam H. ; Olesky, D.D. ; van den Driessche, P.</creatorcontrib><description>A set Hn⁎ of refined inertias for zero–nonzero patterns is introduced that is analogous to the set Hn previously considered for sign patterns. For n=3 and 4, a complete characterization of irreducible zero–nonzero patterns that allow or require Hn⁎ is given, and each zero–nonzero pattern that allows Hn⁎ has a signing that allows Hn. In contrast, for n≥5 a family of irreducible zero–nonzero patterns is given that allows Hn⁎ but for which no one signing allows Hn.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2016.11.040</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Digraph ; Eigenvalues ; Graphs ; Inertia ; Linear algebra ; Refined inertia ; Sign pattern ; Zero–nonzero pattern</subject><ispartof>Linear algebra and its applications, 2017-03, Vol.516, p.243-263</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Mar 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-f21b82e41a29feb8267dd122777c2bb402de06f2cf32808da721444c5955cfaf3</citedby><cites>FETCH-LOGICAL-c368t-f21b82e41a29feb8267dd122777c2bb402de06f2cf32808da721444c5955cfaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2016.11.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Berliner, Adam H.</creatorcontrib><creatorcontrib>Olesky, D.D.</creatorcontrib><creatorcontrib>van den Driessche, P.</creatorcontrib><title>Sets of refined inertias of zero–nonzero patterns</title><title>Linear algebra and its applications</title><description>A set Hn⁎ of refined inertias for zero–nonzero patterns is introduced that is analogous to the set Hn previously considered for sign patterns. For n=3 and 4, a complete characterization of irreducible zero–nonzero patterns that allow or require Hn⁎ is given, and each zero–nonzero pattern that allows Hn⁎ has a signing that allows Hn. In contrast, for n≥5 a family of irreducible zero–nonzero patterns is given that allows Hn⁎ but for which no one signing allows Hn.</description><subject>Digraph</subject><subject>Eigenvalues</subject><subject>Graphs</subject><subject>Inertia</subject><subject>Linear algebra</subject><subject>Refined inertia</subject><subject>Sign pattern</subject><subject>Zero–nonzero pattern</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAQx4MouK4-gLeC59aZadqkeJLFLxA8qOeQTSfQsrZr0hX05Dv4hj6JWdezl5k_w_zn4yfEKUKBgPV5X6ysLSjJArEACXtihlqVOeqq3hczAJJ5qZrqUBzF2AOAVEAzUT7yFLPRZ4F9N3CbpRCmzv7WPjiM359fwzhsVba208RhiMfiwNtV5JO_PBfP11dPi9v8_uHmbnF5n7uy1lPuCZeaWKKlxnOStWpbJFJKOVouJVDLUHtyviQNurWKUErpqqaqnLe-nIuz3dx1GF83HCfTj5swpJWGQDeqBKp16sJdlwtjjOkNsw7diw3vBsFs2ZjeJDZmy8YgmsQmeS52Hk7nv3UcTHQdD47bLrCbTDt2_7h_AC3ja_Y</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Berliner, Adam H.</creator><creator>Olesky, D.D.</creator><creator>van den Driessche, P.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170301</creationdate><title>Sets of refined inertias of zero–nonzero patterns</title><author>Berliner, Adam H. ; Olesky, D.D. ; van den Driessche, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-f21b82e41a29feb8267dd122777c2bb402de06f2cf32808da721444c5955cfaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Digraph</topic><topic>Eigenvalues</topic><topic>Graphs</topic><topic>Inertia</topic><topic>Linear algebra</topic><topic>Refined inertia</topic><topic>Sign pattern</topic><topic>Zero–nonzero pattern</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berliner, Adam H.</creatorcontrib><creatorcontrib>Olesky, D.D.</creatorcontrib><creatorcontrib>van den Driessche, P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berliner, Adam H.</au><au>Olesky, D.D.</au><au>van den Driessche, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sets of refined inertias of zero–nonzero patterns</atitle><jtitle>Linear algebra and its applications</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>516</volume><spage>243</spage><epage>263</epage><pages>243-263</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>A set Hn⁎ of refined inertias for zero–nonzero patterns is introduced that is analogous to the set Hn previously considered for sign patterns. For n=3 and 4, a complete characterization of irreducible zero–nonzero patterns that allow or require Hn⁎ is given, and each zero–nonzero pattern that allows Hn⁎ has a signing that allows Hn. In contrast, for n≥5 a family of irreducible zero–nonzero patterns is given that allows Hn⁎ but for which no one signing allows Hn.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2016.11.040</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2017-03, Vol.516, p.243-263 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2089730268 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Digraph Eigenvalues Graphs Inertia Linear algebra Refined inertia Sign pattern Zero–nonzero pattern |
title | Sets of refined inertias of zero–nonzero patterns |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A41%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sets%20of%20refined%20inertias%20of%20zero%E2%80%93nonzero%20patterns&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Berliner,%20Adam%20H.&rft.date=2017-03-01&rft.volume=516&rft.spage=243&rft.epage=263&rft.pages=243-263&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2016.11.040&rft_dat=%3Cproquest_cross%3E2089730268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089730268&rft_id=info:pmid/&rft_els_id=S002437951630578X&rfr_iscdi=true |