Graphs whose distance matrix has at most three negative eigenvalues
Let D(G) be the distance matrix of a connected simple graph G. The negative inertia of D(G), denoted by nD(G), is the number of negative eigenvalues of D(G). In this paper, we determine all connected graphs G whose distance matrix D(G) has at most three negative eigenvalues.
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2017-10, Vol.530, p.470-484 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 484 |
---|---|
container_issue | |
container_start_page | 470 |
container_title | Linear algebra and its applications |
container_volume | 530 |
creator | Tian, Fenglei Wong, Dein |
description | Let D(G) be the distance matrix of a connected simple graph G. The negative inertia of D(G), denoted by nD(G), is the number of negative eigenvalues of D(G). In this paper, we determine all connected graphs G whose distance matrix D(G) has at most three negative eigenvalues. |
doi_str_mv | 10.1016/j.laa.2017.05.040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2089730229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379517303403</els_id><sourcerecordid>2089730229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-54663d066fb98a0ac455c2ec3301cd545845e3a2a964e8daf553ac26fbf80e6e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxAewssU4Y23EeYoUqKEiV2MDaGpxJ46hNiu0W-HtclTWr2Zx77-gwdiMgFyDKuyFfI-YSRJWDzqGAEzYTdaUyUevylM0AZJGpqtHn7CKEAQCKCuSMzRcet33gX_0UiLcuRBwt8Q1G7755j4Fj5JspRB57T8RHWmF0e-LkVjTucb2jcMXOOlwHuv67l-z96fFt_pwtXxcv84dlZmVVxUwXZalaKMvuo6kR0BZaW0lWKRC21YWuC00KJTZlQXWLndYKrUx4VwOVpC7Z7bF366fPtBvNMO38mCaNhLqpFEjZJEocKeunEDx1ZuvdBv2PEWAOrsxgkitzcGVAm-QqZe6PGUrv7x15E6yjJKJ1nmw07eT-Sf8CZ5BxMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089730229</pqid></control><display><type>article</type><title>Graphs whose distance matrix has at most three negative eigenvalues</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tian, Fenglei ; Wong, Dein</creator><creatorcontrib>Tian, Fenglei ; Wong, Dein</creatorcontrib><description>Let D(G) be the distance matrix of a connected simple graph G. The negative inertia of D(G), denoted by nD(G), is the number of negative eigenvalues of D(G). In this paper, we determine all connected graphs G whose distance matrix D(G) has at most three negative eigenvalues.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2017.05.040</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>D-eigenvalue ; Distance matrix ; Eigenvalues ; Graph theory ; Graphs ; Linear algebra ; Matrix ; Negative inertia</subject><ispartof>Linear algebra and its applications, 2017-10, Vol.530, p.470-484</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Oct 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-54663d066fb98a0ac455c2ec3301cd545845e3a2a964e8daf553ac26fbf80e6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2017.05.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Tian, Fenglei</creatorcontrib><creatorcontrib>Wong, Dein</creatorcontrib><title>Graphs whose distance matrix has at most three negative eigenvalues</title><title>Linear algebra and its applications</title><description>Let D(G) be the distance matrix of a connected simple graph G. The negative inertia of D(G), denoted by nD(G), is the number of negative eigenvalues of D(G). In this paper, we determine all connected graphs G whose distance matrix D(G) has at most three negative eigenvalues.</description><subject>D-eigenvalue</subject><subject>Distance matrix</subject><subject>Eigenvalues</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Linear algebra</subject><subject>Matrix</subject><subject>Negative inertia</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxAewssU4Y23EeYoUqKEiV2MDaGpxJ46hNiu0W-HtclTWr2Zx77-gwdiMgFyDKuyFfI-YSRJWDzqGAEzYTdaUyUevylM0AZJGpqtHn7CKEAQCKCuSMzRcet33gX_0UiLcuRBwt8Q1G7755j4Fj5JspRB57T8RHWmF0e-LkVjTucb2jcMXOOlwHuv67l-z96fFt_pwtXxcv84dlZmVVxUwXZalaKMvuo6kR0BZaW0lWKRC21YWuC00KJTZlQXWLndYKrUx4VwOVpC7Z7bF366fPtBvNMO38mCaNhLqpFEjZJEocKeunEDx1ZuvdBv2PEWAOrsxgkitzcGVAm-QqZe6PGUrv7x15E6yjJKJ1nmw07eT-Sf8CZ5BxMw</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Tian, Fenglei</creator><creator>Wong, Dein</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171001</creationdate><title>Graphs whose distance matrix has at most three negative eigenvalues</title><author>Tian, Fenglei ; Wong, Dein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-54663d066fb98a0ac455c2ec3301cd545845e3a2a964e8daf553ac26fbf80e6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>D-eigenvalue</topic><topic>Distance matrix</topic><topic>Eigenvalues</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Linear algebra</topic><topic>Matrix</topic><topic>Negative inertia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Fenglei</creatorcontrib><creatorcontrib>Wong, Dein</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Fenglei</au><au>Wong, Dein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphs whose distance matrix has at most three negative eigenvalues</atitle><jtitle>Linear algebra and its applications</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>530</volume><spage>470</spage><epage>484</epage><pages>470-484</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Let D(G) be the distance matrix of a connected simple graph G. The negative inertia of D(G), denoted by nD(G), is the number of negative eigenvalues of D(G). In this paper, we determine all connected graphs G whose distance matrix D(G) has at most three negative eigenvalues.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2017.05.040</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2017-10, Vol.530, p.470-484 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2089730229 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | D-eigenvalue Distance matrix Eigenvalues Graph theory Graphs Linear algebra Matrix Negative inertia |
title | Graphs whose distance matrix has at most three negative eigenvalues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphs%20whose%20distance%20matrix%20has%20at%20most%20three%20negative%20eigenvalues&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Tian,%20Fenglei&rft.date=2017-10-01&rft.volume=530&rft.spage=470&rft.epage=484&rft.pages=470-484&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2017.05.040&rft_dat=%3Cproquest_cross%3E2089730229%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089730229&rft_id=info:pmid/&rft_els_id=S0024379517303403&rfr_iscdi=true |