Specht's criterion for systems of linear mappings
W. Specht (1940) proved that two n×n complex matrices A and B are unitarily similar if and only if tracew(A,A⁎)=tracew(B,B⁎) for every word w(x,y) in two noncommuting variables. We extend his criterion and its generalizations by N.A. Wiegmann (1961) and N. Jing (2015) to an arbitrary system A consis...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2017-04, Vol.519, p.278-295 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 295 |
---|---|
container_issue | |
container_start_page | 278 |
container_title | Linear algebra and its applications |
container_volume | 519 |
creator | Futorny, Vyacheslav Horn, Roger A. Sergeichuk, Vladimir V. |
description | W. Specht (1940) proved that two n×n complex matrices A and B are unitarily similar if and only if tracew(A,A⁎)=tracew(B,B⁎) for every word w(x,y) in two noncommuting variables. We extend his criterion and its generalizations by N.A. Wiegmann (1961) and N. Jing (2015) to an arbitrary system A consisting of complex or real inner product spaces and linear mappings among them. We represent such a system by the directed graph Q(A), whose vertices are inner product spaces and arrows are linear mappings. Denote by Q˜(A) the directed graph obtained by enlarging to Q(A) the adjoint linear mappings. We prove that a system A is transformed by isometries of its spaces to a system B if and only if the traces of all closed directed walks in Q˜(A) and Q˜(B) coincide. |
doi_str_mv | 10.1016/j.laa.2017.01.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2089727000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379517300198</els_id><sourcerecordid>2089727000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-3262c905de830d2f2769f87968f068cf8961bc9c045b6777990ec0aef083f0cc3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9giMTAlnO3GH2JCFV9SJQZgtlznDI7aONgpEv8eV2VmuuV93rt7CLmk0FCg4qZvNtY2DKhsgDYA4ojMqJK8pqoVx2QGwBY1l7o9JWc59wCwkMBmhL6O6D6n61y5FCZMIQ6Vj6nKP3nCba6irzZhQJuqrR3HMHzkc3Li7Sbjxd-ck_eH-7flU716eXxe3q1qx4Waas4EcxraDhWHjnkmhfZKaqE8COW80oKunXawaNdCSqk1oAOLHhT34Byfk6tD75ji1w7zZPq4S0NZaRgoLZksT5QUPaRcijkn9GZMYWvTj6Fg9mZMb4oZszdjgJpipjC3BwbL-d8Bk8ku4OCwCwndZLoY_qF_AbEbabg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089727000</pqid></control><display><type>article</type><title>Specht's criterion for systems of linear mappings</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Futorny, Vyacheslav ; Horn, Roger A. ; Sergeichuk, Vladimir V.</creator><creatorcontrib>Futorny, Vyacheslav ; Horn, Roger A. ; Sergeichuk, Vladimir V.</creatorcontrib><description>W. Specht (1940) proved that two n×n complex matrices A and B are unitarily similar if and only if tracew(A,A⁎)=tracew(B,B⁎) for every word w(x,y) in two noncommuting variables. We extend his criterion and its generalizations by N.A. Wiegmann (1961) and N. Jing (2015) to an arbitrary system A consisting of complex or real inner product spaces and linear mappings among them. We represent such a system by the directed graph Q(A), whose vertices are inner product spaces and arrows are linear mappings. Denote by Q˜(A) the directed graph obtained by enlarging to Q(A) the adjoint linear mappings. We prove that a system A is transformed by isometries of its spaces to a system B if and only if the traces of all closed directed walks in Q˜(A) and Q˜(B) coincide.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2017.01.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Criteria ; Graph theory ; Graphs ; Linear algebra ; Mathematical analysis ; Matrix ; Matrix methods ; Specht's criterion ; Unitary and Euclidean representations of quivers ; Unitary similarity ; Variables</subject><ispartof>Linear algebra and its applications, 2017-04, Vol.519, p.278-295</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Apr 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-3262c905de830d2f2769f87968f068cf8961bc9c045b6777990ec0aef083f0cc3</citedby><cites>FETCH-LOGICAL-c368t-3262c905de830d2f2769f87968f068cf8961bc9c045b6777990ec0aef083f0cc3</cites><orcidid>0000-0002-1853-6618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2017.01.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Futorny, Vyacheslav</creatorcontrib><creatorcontrib>Horn, Roger A.</creatorcontrib><creatorcontrib>Sergeichuk, Vladimir V.</creatorcontrib><title>Specht's criterion for systems of linear mappings</title><title>Linear algebra and its applications</title><description>W. Specht (1940) proved that two n×n complex matrices A and B are unitarily similar if and only if tracew(A,A⁎)=tracew(B,B⁎) for every word w(x,y) in two noncommuting variables. We extend his criterion and its generalizations by N.A. Wiegmann (1961) and N. Jing (2015) to an arbitrary system A consisting of complex or real inner product spaces and linear mappings among them. We represent such a system by the directed graph Q(A), whose vertices are inner product spaces and arrows are linear mappings. Denote by Q˜(A) the directed graph obtained by enlarging to Q(A) the adjoint linear mappings. We prove that a system A is transformed by isometries of its spaces to a system B if and only if the traces of all closed directed walks in Q˜(A) and Q˜(B) coincide.</description><subject>Criteria</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Matrix</subject><subject>Matrix methods</subject><subject>Specht's criterion</subject><subject>Unitary and Euclidean representations of quivers</subject><subject>Unitary similarity</subject><subject>Variables</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9giMTAlnO3GH2JCFV9SJQZgtlznDI7aONgpEv8eV2VmuuV93rt7CLmk0FCg4qZvNtY2DKhsgDYA4ojMqJK8pqoVx2QGwBY1l7o9JWc59wCwkMBmhL6O6D6n61y5FCZMIQ6Vj6nKP3nCba6irzZhQJuqrR3HMHzkc3Li7Sbjxd-ck_eH-7flU716eXxe3q1qx4Waas4EcxraDhWHjnkmhfZKaqE8COW80oKunXawaNdCSqk1oAOLHhT34Byfk6tD75ji1w7zZPq4S0NZaRgoLZksT5QUPaRcijkn9GZMYWvTj6Fg9mZMb4oZszdjgJpipjC3BwbL-d8Bk8ku4OCwCwndZLoY_qF_AbEbabg</recordid><startdate>20170415</startdate><enddate>20170415</enddate><creator>Futorny, Vyacheslav</creator><creator>Horn, Roger A.</creator><creator>Sergeichuk, Vladimir V.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1853-6618</orcidid></search><sort><creationdate>20170415</creationdate><title>Specht's criterion for systems of linear mappings</title><author>Futorny, Vyacheslav ; Horn, Roger A. ; Sergeichuk, Vladimir V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-3262c905de830d2f2769f87968f068cf8961bc9c045b6777990ec0aef083f0cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Criteria</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Matrix</topic><topic>Matrix methods</topic><topic>Specht's criterion</topic><topic>Unitary and Euclidean representations of quivers</topic><topic>Unitary similarity</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Futorny, Vyacheslav</creatorcontrib><creatorcontrib>Horn, Roger A.</creatorcontrib><creatorcontrib>Sergeichuk, Vladimir V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Futorny, Vyacheslav</au><au>Horn, Roger A.</au><au>Sergeichuk, Vladimir V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Specht's criterion for systems of linear mappings</atitle><jtitle>Linear algebra and its applications</jtitle><date>2017-04-15</date><risdate>2017</risdate><volume>519</volume><spage>278</spage><epage>295</epage><pages>278-295</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>W. Specht (1940) proved that two n×n complex matrices A and B are unitarily similar if and only if tracew(A,A⁎)=tracew(B,B⁎) for every word w(x,y) in two noncommuting variables. We extend his criterion and its generalizations by N.A. Wiegmann (1961) and N. Jing (2015) to an arbitrary system A consisting of complex or real inner product spaces and linear mappings among them. We represent such a system by the directed graph Q(A), whose vertices are inner product spaces and arrows are linear mappings. Denote by Q˜(A) the directed graph obtained by enlarging to Q(A) the adjoint linear mappings. We prove that a system A is transformed by isometries of its spaces to a system B if and only if the traces of all closed directed walks in Q˜(A) and Q˜(B) coincide.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2017.01.006</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1853-6618</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2017-04, Vol.519, p.278-295 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2089727000 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier) |
subjects | Criteria Graph theory Graphs Linear algebra Mathematical analysis Matrix Matrix methods Specht's criterion Unitary and Euclidean representations of quivers Unitary similarity Variables |
title | Specht's criterion for systems of linear mappings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Specht's%20criterion%20for%20systems%20of%20linear%20mappings&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Futorny,%20Vyacheslav&rft.date=2017-04-15&rft.volume=519&rft.spage=278&rft.epage=295&rft.pages=278-295&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2017.01.006&rft_dat=%3Cproquest_cross%3E2089727000%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089727000&rft_id=info:pmid/&rft_els_id=S0024379517300198&rfr_iscdi=true |