Specht's criterion for systems of linear mappings

W. Specht (1940) proved that two n×n complex matrices A and B are unitarily similar if and only if tracew(A,A⁎)=tracew(B,B⁎) for every word w(x,y) in two noncommuting variables. We extend his criterion and its generalizations by N.A. Wiegmann (1961) and N. Jing (2015) to an arbitrary system A consis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2017-04, Vol.519, p.278-295
Hauptverfasser: Futorny, Vyacheslav, Horn, Roger A., Sergeichuk, Vladimir V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 295
container_issue
container_start_page 278
container_title Linear algebra and its applications
container_volume 519
creator Futorny, Vyacheslav
Horn, Roger A.
Sergeichuk, Vladimir V.
description W. Specht (1940) proved that two n×n complex matrices A and B are unitarily similar if and only if tracew(A,A⁎)=tracew(B,B⁎) for every word w(x,y) in two noncommuting variables. We extend his criterion and its generalizations by N.A. Wiegmann (1961) and N. Jing (2015) to an arbitrary system A consisting of complex or real inner product spaces and linear mappings among them. We represent such a system by the directed graph Q(A), whose vertices are inner product spaces and arrows are linear mappings. Denote by Q˜(A) the directed graph obtained by enlarging to Q(A) the adjoint linear mappings. We prove that a system A is transformed by isometries of its spaces to a system B if and only if the traces of all closed directed walks in Q˜(A) and Q˜(B) coincide.
doi_str_mv 10.1016/j.laa.2017.01.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2089727000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379517300198</els_id><sourcerecordid>2089727000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-3262c905de830d2f2769f87968f068cf8961bc9c045b6777990ec0aef083f0cc3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9giMTAlnO3GH2JCFV9SJQZgtlznDI7aONgpEv8eV2VmuuV93rt7CLmk0FCg4qZvNtY2DKhsgDYA4ojMqJK8pqoVx2QGwBY1l7o9JWc59wCwkMBmhL6O6D6n61y5FCZMIQ6Vj6nKP3nCba6irzZhQJuqrR3HMHzkc3Li7Sbjxd-ck_eH-7flU716eXxe3q1qx4Waas4EcxraDhWHjnkmhfZKaqE8COW80oKunXawaNdCSqk1oAOLHhT34Byfk6tD75ji1w7zZPq4S0NZaRgoLZksT5QUPaRcijkn9GZMYWvTj6Fg9mZMb4oZszdjgJpipjC3BwbL-d8Bk8ku4OCwCwndZLoY_qF_AbEbabg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089727000</pqid></control><display><type>article</type><title>Specht's criterion for systems of linear mappings</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Futorny, Vyacheslav ; Horn, Roger A. ; Sergeichuk, Vladimir V.</creator><creatorcontrib>Futorny, Vyacheslav ; Horn, Roger A. ; Sergeichuk, Vladimir V.</creatorcontrib><description>W. Specht (1940) proved that two n×n complex matrices A and B are unitarily similar if and only if tracew(A,A⁎)=tracew(B,B⁎) for every word w(x,y) in two noncommuting variables. We extend his criterion and its generalizations by N.A. Wiegmann (1961) and N. Jing (2015) to an arbitrary system A consisting of complex or real inner product spaces and linear mappings among them. We represent such a system by the directed graph Q(A), whose vertices are inner product spaces and arrows are linear mappings. Denote by Q˜(A) the directed graph obtained by enlarging to Q(A) the adjoint linear mappings. We prove that a system A is transformed by isometries of its spaces to a system B if and only if the traces of all closed directed walks in Q˜(A) and Q˜(B) coincide.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2017.01.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Criteria ; Graph theory ; Graphs ; Linear algebra ; Mathematical analysis ; Matrix ; Matrix methods ; Specht's criterion ; Unitary and Euclidean representations of quivers ; Unitary similarity ; Variables</subject><ispartof>Linear algebra and its applications, 2017-04, Vol.519, p.278-295</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Apr 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-3262c905de830d2f2769f87968f068cf8961bc9c045b6777990ec0aef083f0cc3</citedby><cites>FETCH-LOGICAL-c368t-3262c905de830d2f2769f87968f068cf8961bc9c045b6777990ec0aef083f0cc3</cites><orcidid>0000-0002-1853-6618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2017.01.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Futorny, Vyacheslav</creatorcontrib><creatorcontrib>Horn, Roger A.</creatorcontrib><creatorcontrib>Sergeichuk, Vladimir V.</creatorcontrib><title>Specht's criterion for systems of linear mappings</title><title>Linear algebra and its applications</title><description>W. Specht (1940) proved that two n×n complex matrices A and B are unitarily similar if and only if tracew(A,A⁎)=tracew(B,B⁎) for every word w(x,y) in two noncommuting variables. We extend his criterion and its generalizations by N.A. Wiegmann (1961) and N. Jing (2015) to an arbitrary system A consisting of complex or real inner product spaces and linear mappings among them. We represent such a system by the directed graph Q(A), whose vertices are inner product spaces and arrows are linear mappings. Denote by Q˜(A) the directed graph obtained by enlarging to Q(A) the adjoint linear mappings. We prove that a system A is transformed by isometries of its spaces to a system B if and only if the traces of all closed directed walks in Q˜(A) and Q˜(B) coincide.</description><subject>Criteria</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Matrix</subject><subject>Matrix methods</subject><subject>Specht's criterion</subject><subject>Unitary and Euclidean representations of quivers</subject><subject>Unitary similarity</subject><subject>Variables</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9giMTAlnO3GH2JCFV9SJQZgtlznDI7aONgpEv8eV2VmuuV93rt7CLmk0FCg4qZvNtY2DKhsgDYA4ojMqJK8pqoVx2QGwBY1l7o9JWc59wCwkMBmhL6O6D6n61y5FCZMIQ6Vj6nKP3nCba6irzZhQJuqrR3HMHzkc3Li7Sbjxd-ck_eH-7flU716eXxe3q1qx4Waas4EcxraDhWHjnkmhfZKaqE8COW80oKunXawaNdCSqk1oAOLHhT34Byfk6tD75ji1w7zZPq4S0NZaRgoLZksT5QUPaRcijkn9GZMYWvTj6Fg9mZMb4oZszdjgJpipjC3BwbL-d8Bk8ku4OCwCwndZLoY_qF_AbEbabg</recordid><startdate>20170415</startdate><enddate>20170415</enddate><creator>Futorny, Vyacheslav</creator><creator>Horn, Roger A.</creator><creator>Sergeichuk, Vladimir V.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1853-6618</orcidid></search><sort><creationdate>20170415</creationdate><title>Specht's criterion for systems of linear mappings</title><author>Futorny, Vyacheslav ; Horn, Roger A. ; Sergeichuk, Vladimir V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-3262c905de830d2f2769f87968f068cf8961bc9c045b6777990ec0aef083f0cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Criteria</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Matrix</topic><topic>Matrix methods</topic><topic>Specht's criterion</topic><topic>Unitary and Euclidean representations of quivers</topic><topic>Unitary similarity</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Futorny, Vyacheslav</creatorcontrib><creatorcontrib>Horn, Roger A.</creatorcontrib><creatorcontrib>Sergeichuk, Vladimir V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Futorny, Vyacheslav</au><au>Horn, Roger A.</au><au>Sergeichuk, Vladimir V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Specht's criterion for systems of linear mappings</atitle><jtitle>Linear algebra and its applications</jtitle><date>2017-04-15</date><risdate>2017</risdate><volume>519</volume><spage>278</spage><epage>295</epage><pages>278-295</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>W. Specht (1940) proved that two n×n complex matrices A and B are unitarily similar if and only if tracew(A,A⁎)=tracew(B,B⁎) for every word w(x,y) in two noncommuting variables. We extend his criterion and its generalizations by N.A. Wiegmann (1961) and N. Jing (2015) to an arbitrary system A consisting of complex or real inner product spaces and linear mappings among them. We represent such a system by the directed graph Q(A), whose vertices are inner product spaces and arrows are linear mappings. Denote by Q˜(A) the directed graph obtained by enlarging to Q(A) the adjoint linear mappings. We prove that a system A is transformed by isometries of its spaces to a system B if and only if the traces of all closed directed walks in Q˜(A) and Q˜(B) coincide.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2017.01.006</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1853-6618</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2017-04, Vol.519, p.278-295
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2089727000
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects Criteria
Graph theory
Graphs
Linear algebra
Mathematical analysis
Matrix
Matrix methods
Specht's criterion
Unitary and Euclidean representations of quivers
Unitary similarity
Variables
title Specht's criterion for systems of linear mappings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Specht's%20criterion%20for%20systems%20of%20linear%20mappings&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Futorny,%20Vyacheslav&rft.date=2017-04-15&rft.volume=519&rft.spage=278&rft.epage=295&rft.pages=278-295&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2017.01.006&rft_dat=%3Cproquest_cross%3E2089727000%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089727000&rft_id=info:pmid/&rft_els_id=S0024379517300198&rfr_iscdi=true