A semi-smooth Newton method for projection equations and linear complementarity problems with respect to the second order cone
In this paper a special semi-smooth equation associated to the second order cone is studied. It is shown that, under mild assumptions, the semi-smooth Newton method applied to this equation is well-defined and the generated sequence is globally and Q-linearly convergent to a solution. As an applicat...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2017-01, Vol.513, p.160-181 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 181 |
---|---|
container_issue | |
container_start_page | 160 |
container_title | Linear algebra and its applications |
container_volume | 513 |
creator | Bello Cruz, J.Y. Ferreira, O.P. Németh, S.Z. Prudente, L.F. |
description | In this paper a special semi-smooth equation associated to the second order cone is studied. It is shown that, under mild assumptions, the semi-smooth Newton method applied to this equation is well-defined and the generated sequence is globally and Q-linearly convergent to a solution. As an application, the obtained results are used to study the linear second order cone complementarity problem, with special emphasis on the particular case of positive definite matrices. Moreover, some computational experiments designed to investigate the practical viability of the method are presented. |
doi_str_mv | 10.1016/j.laa.2016.10.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2089726069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379516304670</els_id><sourcerecordid>2089726069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-a5f7bc93d2edc69c94e22eb0b1565a72bfdae39431d78543571d19d2d992649e3</originalsourceid><addsrcrecordid>eNp9kMlOwzAURS0EEmX4AHaWWCfYzuBYrKqKSapgA2vLsV9UR02c2i5VN3w7jsqa1Rt0zxsuQneU5JTQ-qHPt0rlLKWpzgnhZ2hBG15ktKnqc7QghJVZwUV1ia5C6AkhJSdsgX6WOMBgszA4Fzf4HQ7RjXiAuHEGd87jybsedLSpC7u9mpOA1Wjw1o6gPNZumLYwwBiVt_E469tUB3ywaZ6HMCUaR4fjBtIq7RLqvIGZHOEGXXRqG-D2L16jr-enz9Vrtv54eVst15ku6iZmqup4q0VhGBhdCy1KYAxa0tKqrhRnbWcUFKIsqOFNVRYVp4YKw4wQrC4FFNfo_jQ3nbfbQ4iyd3s_ppWSkUZwVpNaJBU9qbR3IXjo5OTtoPxRUiJnm2Uvk81ytnluJZsT83hiIJ3_bcHLoC2MGoz16XNpnP2H_gV_DIej</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089726069</pqid></control><display><type>article</type><title>A semi-smooth Newton method for projection equations and linear complementarity problems with respect to the second order cone</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bello Cruz, J.Y. ; Ferreira, O.P. ; Németh, S.Z. ; Prudente, L.F.</creator><creatorcontrib>Bello Cruz, J.Y. ; Ferreira, O.P. ; Németh, S.Z. ; Prudente, L.F.</creatorcontrib><description>In this paper a special semi-smooth equation associated to the second order cone is studied. It is shown that, under mild assumptions, the semi-smooth Newton method applied to this equation is well-defined and the generated sequence is globally and Q-linearly convergent to a solution. As an application, the obtained results are used to study the linear second order cone complementarity problem, with special emphasis on the particular case of positive definite matrices. Moreover, some computational experiments designed to investigate the practical viability of the method are presented.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2016.10.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Conic programming ; Linear algebra ; Linear equations ; Mathematical analysis ; Mathematical problems ; Matrix methods ; Numerical analysis ; Second order cone ; Semi-smooth Newton method ; Semi-smooth system ; Viability</subject><ispartof>Linear algebra and its applications, 2017-01, Vol.513, p.160-181</ispartof><rights>2016</rights><rights>Copyright American Elsevier Company, Inc. Jan 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-a5f7bc93d2edc69c94e22eb0b1565a72bfdae39431d78543571d19d2d992649e3</citedby><cites>FETCH-LOGICAL-c368t-a5f7bc93d2edc69c94e22eb0b1565a72bfdae39431d78543571d19d2d992649e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2016.10.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids></links><search><creatorcontrib>Bello Cruz, J.Y.</creatorcontrib><creatorcontrib>Ferreira, O.P.</creatorcontrib><creatorcontrib>Németh, S.Z.</creatorcontrib><creatorcontrib>Prudente, L.F.</creatorcontrib><title>A semi-smooth Newton method for projection equations and linear complementarity problems with respect to the second order cone</title><title>Linear algebra and its applications</title><description>In this paper a special semi-smooth equation associated to the second order cone is studied. It is shown that, under mild assumptions, the semi-smooth Newton method applied to this equation is well-defined and the generated sequence is globally and Q-linearly convergent to a solution. As an application, the obtained results are used to study the linear second order cone complementarity problem, with special emphasis on the particular case of positive definite matrices. Moreover, some computational experiments designed to investigate the practical viability of the method are presented.</description><subject>Conic programming</subject><subject>Linear algebra</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>Matrix methods</subject><subject>Numerical analysis</subject><subject>Second order cone</subject><subject>Semi-smooth Newton method</subject><subject>Semi-smooth system</subject><subject>Viability</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAURS0EEmX4AHaWWCfYzuBYrKqKSapgA2vLsV9UR02c2i5VN3w7jsqa1Rt0zxsuQneU5JTQ-qHPt0rlLKWpzgnhZ2hBG15ktKnqc7QghJVZwUV1ia5C6AkhJSdsgX6WOMBgszA4Fzf4HQ7RjXiAuHEGd87jybsedLSpC7u9mpOA1Wjw1o6gPNZumLYwwBiVt_E469tUB3ywaZ6HMCUaR4fjBtIq7RLqvIGZHOEGXXRqG-D2L16jr-enz9Vrtv54eVst15ku6iZmqup4q0VhGBhdCy1KYAxa0tKqrhRnbWcUFKIsqOFNVRYVp4YKw4wQrC4FFNfo_jQ3nbfbQ4iyd3s_ppWSkUZwVpNaJBU9qbR3IXjo5OTtoPxRUiJnm2Uvk81ytnluJZsT83hiIJ3_bcHLoC2MGoz16XNpnP2H_gV_DIej</recordid><startdate>20170115</startdate><enddate>20170115</enddate><creator>Bello Cruz, J.Y.</creator><creator>Ferreira, O.P.</creator><creator>Németh, S.Z.</creator><creator>Prudente, L.F.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170115</creationdate><title>A semi-smooth Newton method for projection equations and linear complementarity problems with respect to the second order cone</title><author>Bello Cruz, J.Y. ; Ferreira, O.P. ; Németh, S.Z. ; Prudente, L.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-a5f7bc93d2edc69c94e22eb0b1565a72bfdae39431d78543571d19d2d992649e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Conic programming</topic><topic>Linear algebra</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>Matrix methods</topic><topic>Numerical analysis</topic><topic>Second order cone</topic><topic>Semi-smooth Newton method</topic><topic>Semi-smooth system</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bello Cruz, J.Y.</creatorcontrib><creatorcontrib>Ferreira, O.P.</creatorcontrib><creatorcontrib>Németh, S.Z.</creatorcontrib><creatorcontrib>Prudente, L.F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bello Cruz, J.Y.</au><au>Ferreira, O.P.</au><au>Németh, S.Z.</au><au>Prudente, L.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A semi-smooth Newton method for projection equations and linear complementarity problems with respect to the second order cone</atitle><jtitle>Linear algebra and its applications</jtitle><date>2017-01-15</date><risdate>2017</risdate><volume>513</volume><spage>160</spage><epage>181</epage><pages>160-181</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>In this paper a special semi-smooth equation associated to the second order cone is studied. It is shown that, under mild assumptions, the semi-smooth Newton method applied to this equation is well-defined and the generated sequence is globally and Q-linearly convergent to a solution. As an application, the obtained results are used to study the linear second order cone complementarity problem, with special emphasis on the particular case of positive definite matrices. Moreover, some computational experiments designed to investigate the practical viability of the method are presented.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2016.10.007</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2017-01, Vol.513, p.160-181 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2089726069 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Conic programming Linear algebra Linear equations Mathematical analysis Mathematical problems Matrix methods Numerical analysis Second order cone Semi-smooth Newton method Semi-smooth system Viability |
title | A semi-smooth Newton method for projection equations and linear complementarity problems with respect to the second order cone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20semi-smooth%20Newton%20method%20for%20projection%20equations%20and%20linear%20complementarity%20problems%20with%20respect%20to%20the%20second%20order%20cone&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Bello%20Cruz,%20J.Y.&rft.date=2017-01-15&rft.volume=513&rft.spage=160&rft.epage=181&rft.pages=160-181&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2016.10.007&rft_dat=%3Cproquest_cross%3E2089726069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089726069&rft_id=info:pmid/&rft_els_id=S0024379516304670&rfr_iscdi=true |