A semi-smooth Newton method for projection equations and linear complementarity problems with respect to the second order cone

In this paper a special semi-smooth equation associated to the second order cone is studied. It is shown that, under mild assumptions, the semi-smooth Newton method applied to this equation is well-defined and the generated sequence is globally and Q-linearly convergent to a solution. As an applicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2017-01, Vol.513, p.160-181
Hauptverfasser: Bello Cruz, J.Y., Ferreira, O.P., Németh, S.Z., Prudente, L.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue
container_start_page 160
container_title Linear algebra and its applications
container_volume 513
creator Bello Cruz, J.Y.
Ferreira, O.P.
Németh, S.Z.
Prudente, L.F.
description In this paper a special semi-smooth equation associated to the second order cone is studied. It is shown that, under mild assumptions, the semi-smooth Newton method applied to this equation is well-defined and the generated sequence is globally and Q-linearly convergent to a solution. As an application, the obtained results are used to study the linear second order cone complementarity problem, with special emphasis on the particular case of positive definite matrices. Moreover, some computational experiments designed to investigate the practical viability of the method are presented.
doi_str_mv 10.1016/j.laa.2016.10.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2089726069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379516304670</els_id><sourcerecordid>2089726069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-a5f7bc93d2edc69c94e22eb0b1565a72bfdae39431d78543571d19d2d992649e3</originalsourceid><addsrcrecordid>eNp9kMlOwzAURS0EEmX4AHaWWCfYzuBYrKqKSapgA2vLsV9UR02c2i5VN3w7jsqa1Rt0zxsuQneU5JTQ-qHPt0rlLKWpzgnhZ2hBG15ktKnqc7QghJVZwUV1ia5C6AkhJSdsgX6WOMBgszA4Fzf4HQ7RjXiAuHEGd87jybsedLSpC7u9mpOA1Wjw1o6gPNZumLYwwBiVt_E469tUB3ywaZ6HMCUaR4fjBtIq7RLqvIGZHOEGXXRqG-D2L16jr-enz9Vrtv54eVst15ku6iZmqup4q0VhGBhdCy1KYAxa0tKqrhRnbWcUFKIsqOFNVRYVp4YKw4wQrC4FFNfo_jQ3nbfbQ4iyd3s_ppWSkUZwVpNaJBU9qbR3IXjo5OTtoPxRUiJnm2Uvk81ytnluJZsT83hiIJ3_bcHLoC2MGoz16XNpnP2H_gV_DIej</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089726069</pqid></control><display><type>article</type><title>A semi-smooth Newton method for projection equations and linear complementarity problems with respect to the second order cone</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bello Cruz, J.Y. ; Ferreira, O.P. ; Németh, S.Z. ; Prudente, L.F.</creator><creatorcontrib>Bello Cruz, J.Y. ; Ferreira, O.P. ; Németh, S.Z. ; Prudente, L.F.</creatorcontrib><description>In this paper a special semi-smooth equation associated to the second order cone is studied. It is shown that, under mild assumptions, the semi-smooth Newton method applied to this equation is well-defined and the generated sequence is globally and Q-linearly convergent to a solution. As an application, the obtained results are used to study the linear second order cone complementarity problem, with special emphasis on the particular case of positive definite matrices. Moreover, some computational experiments designed to investigate the practical viability of the method are presented.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2016.10.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Conic programming ; Linear algebra ; Linear equations ; Mathematical analysis ; Mathematical problems ; Matrix methods ; Numerical analysis ; Second order cone ; Semi-smooth Newton method ; Semi-smooth system ; Viability</subject><ispartof>Linear algebra and its applications, 2017-01, Vol.513, p.160-181</ispartof><rights>2016</rights><rights>Copyright American Elsevier Company, Inc. Jan 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-a5f7bc93d2edc69c94e22eb0b1565a72bfdae39431d78543571d19d2d992649e3</citedby><cites>FETCH-LOGICAL-c368t-a5f7bc93d2edc69c94e22eb0b1565a72bfdae39431d78543571d19d2d992649e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2016.10.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids></links><search><creatorcontrib>Bello Cruz, J.Y.</creatorcontrib><creatorcontrib>Ferreira, O.P.</creatorcontrib><creatorcontrib>Németh, S.Z.</creatorcontrib><creatorcontrib>Prudente, L.F.</creatorcontrib><title>A semi-smooth Newton method for projection equations and linear complementarity problems with respect to the second order cone</title><title>Linear algebra and its applications</title><description>In this paper a special semi-smooth equation associated to the second order cone is studied. It is shown that, under mild assumptions, the semi-smooth Newton method applied to this equation is well-defined and the generated sequence is globally and Q-linearly convergent to a solution. As an application, the obtained results are used to study the linear second order cone complementarity problem, with special emphasis on the particular case of positive definite matrices. Moreover, some computational experiments designed to investigate the practical viability of the method are presented.</description><subject>Conic programming</subject><subject>Linear algebra</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>Matrix methods</subject><subject>Numerical analysis</subject><subject>Second order cone</subject><subject>Semi-smooth Newton method</subject><subject>Semi-smooth system</subject><subject>Viability</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAURS0EEmX4AHaWWCfYzuBYrKqKSapgA2vLsV9UR02c2i5VN3w7jsqa1Rt0zxsuQneU5JTQ-qHPt0rlLKWpzgnhZ2hBG15ktKnqc7QghJVZwUV1ia5C6AkhJSdsgX6WOMBgszA4Fzf4HQ7RjXiAuHEGd87jybsedLSpC7u9mpOA1Wjw1o6gPNZumLYwwBiVt_E469tUB3ywaZ6HMCUaR4fjBtIq7RLqvIGZHOEGXXRqG-D2L16jr-enz9Vrtv54eVst15ku6iZmqup4q0VhGBhdCy1KYAxa0tKqrhRnbWcUFKIsqOFNVRYVp4YKw4wQrC4FFNfo_jQ3nbfbQ4iyd3s_ppWSkUZwVpNaJBU9qbR3IXjo5OTtoPxRUiJnm2Uvk81ytnluJZsT83hiIJ3_bcHLoC2MGoz16XNpnP2H_gV_DIej</recordid><startdate>20170115</startdate><enddate>20170115</enddate><creator>Bello Cruz, J.Y.</creator><creator>Ferreira, O.P.</creator><creator>Németh, S.Z.</creator><creator>Prudente, L.F.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170115</creationdate><title>A semi-smooth Newton method for projection equations and linear complementarity problems with respect to the second order cone</title><author>Bello Cruz, J.Y. ; Ferreira, O.P. ; Németh, S.Z. ; Prudente, L.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-a5f7bc93d2edc69c94e22eb0b1565a72bfdae39431d78543571d19d2d992649e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Conic programming</topic><topic>Linear algebra</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>Matrix methods</topic><topic>Numerical analysis</topic><topic>Second order cone</topic><topic>Semi-smooth Newton method</topic><topic>Semi-smooth system</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bello Cruz, J.Y.</creatorcontrib><creatorcontrib>Ferreira, O.P.</creatorcontrib><creatorcontrib>Németh, S.Z.</creatorcontrib><creatorcontrib>Prudente, L.F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bello Cruz, J.Y.</au><au>Ferreira, O.P.</au><au>Németh, S.Z.</au><au>Prudente, L.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A semi-smooth Newton method for projection equations and linear complementarity problems with respect to the second order cone</atitle><jtitle>Linear algebra and its applications</jtitle><date>2017-01-15</date><risdate>2017</risdate><volume>513</volume><spage>160</spage><epage>181</epage><pages>160-181</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>In this paper a special semi-smooth equation associated to the second order cone is studied. It is shown that, under mild assumptions, the semi-smooth Newton method applied to this equation is well-defined and the generated sequence is globally and Q-linearly convergent to a solution. As an application, the obtained results are used to study the linear second order cone complementarity problem, with special emphasis on the particular case of positive definite matrices. Moreover, some computational experiments designed to investigate the practical viability of the method are presented.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2016.10.007</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2017-01, Vol.513, p.160-181
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2089726069
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Conic programming
Linear algebra
Linear equations
Mathematical analysis
Mathematical problems
Matrix methods
Numerical analysis
Second order cone
Semi-smooth Newton method
Semi-smooth system
Viability
title A semi-smooth Newton method for projection equations and linear complementarity problems with respect to the second order cone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20semi-smooth%20Newton%20method%20for%20projection%20equations%20and%20linear%20complementarity%20problems%20with%20respect%20to%20the%20second%20order%20cone&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Bello%20Cruz,%20J.Y.&rft.date=2017-01-15&rft.volume=513&rft.spage=160&rft.epage=181&rft.pages=160-181&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2016.10.007&rft_dat=%3Cproquest_cross%3E2089726069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089726069&rft_id=info:pmid/&rft_els_id=S0024379516304670&rfr_iscdi=true