Stability of gold nanocatalysts supported on mesoporous silica for the oxidation of 5-hydroxymethyl furfural to furan-2,5-dicarboxylic acid

[Display omitted] •The reaction conditions affect the Au particle growth in liquid phase oxidation.•Particle diffusion followed by coalescence is proposed as dominant growth mechanism.•Au particle growth is mitigated by carefully selecting the silica support morphology. The synthesis of furan-2,5-di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. A, General General, 2018-07, Vol.561, p.150-157
Hauptverfasser: Masoud, Nazila, Donoeva, Baira, de Jongh, Petra E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 157
container_issue
container_start_page 150
container_title Applied catalysis. A, General
container_volume 561
creator Masoud, Nazila
Donoeva, Baira
de Jongh, Petra E.
description [Display omitted] •The reaction conditions affect the Au particle growth in liquid phase oxidation.•Particle diffusion followed by coalescence is proposed as dominant growth mechanism.•Au particle growth is mitigated by carefully selecting the silica support morphology. The synthesis of furan-2,5-dicarboxylic acid via catalytic oxidation of 5-hydroxymethyl furfural is an important step for the production of bio-sourced polymers. We report on the activity of SiO2-supported Au catalysts for this reaction. These catalysts reached 74% furan-2,5-dicarboxylic acid yield at 90 °C in 5 h when 5-hydroxymethyl furfural to Au molar ratio was 72. We also investigated the influence of the morphologies of the silica supports on the growth of Au nanoparticles under reaction conditions. Pronounced growth of Au nanoparticles occurred on Aerosil, SiO2 with a disordered porosity and 50 nm average pore diameter: Au nanoparticles grew from 2.4 to 10.1 nm. However, by using ordered mesoporous supports, the growth of the gold nanoparticles was successfully minimized. Also the reaction conditions influenced the particle growth; for instance using HCO3− as a base led to more pronounced particle growth than using NaOH. Particle diffusion in solution, and subsequent coalescence and agglomeration was proposed to be the dominant particle growth mechanism. Our results show the importance of support morphology in mitigation of Au particle growth in liquid phase oxidation reactions.
doi_str_mv 10.1016/j.apcata.2018.05.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2089190200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926860X18302552</els_id><sourcerecordid>2089190200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-c473582f9c99379f940aaf4c10fd044ebc383ddf1c4851c68cef77cdf028da733</originalsourceid><addsrcrecordid>eNp9kM1q3DAUhUVJoZNp36ALQbexcyXbI2lTCEPSBgaySAvdCY1-Oho8livJYfwMfelocNaBi-6VOOe76CD0lUBNgGxuj7UatcqqpkB4DV0NlH1AK8JZUzWcdVdoBYJuKr6BP5_QdUpHAKCt6Fbo_3NWe9_7POPg8N_QGzyoIVxo_ZxywmkaxxCzNTgM-GRTKLcwlfdi0gq7EHE-WBzO3qjsi6ZguuowmxjO88nmw9xjN8VSqsc5XGY1VPSmq0zxx31RFRBW2pvP6KNTfbJf3voa_X64_7X9We2efjxu73aVbgnL5WRNx6kTWoiGCSdaUMq1moAz0LZ2rxveGOOIbnlH9IZr6xjTxgHlRrGmWaNvC3eM4d9kU5bHMMWhrJQUuCACKEBRtYtKx5BStE6O0Z9UnCUBeYldHuUSu7zELqGTJfZi-77YbPnBi7dRJu3toK3x0eosTfDvA14ByrOQtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089190200</pqid></control><display><type>article</type><title>Stability of gold nanocatalysts supported on mesoporous silica for the oxidation of 5-hydroxymethyl furfural to furan-2,5-dicarboxylic acid</title><source>Elsevier ScienceDirect Journals</source><creator>Masoud, Nazila ; Donoeva, Baira ; de Jongh, Petra E.</creator><creatorcontrib>Masoud, Nazila ; Donoeva, Baira ; de Jongh, Petra E.</creatorcontrib><description>[Display omitted] •The reaction conditions affect the Au particle growth in liquid phase oxidation.•Particle diffusion followed by coalescence is proposed as dominant growth mechanism.•Au particle growth is mitigated by carefully selecting the silica support morphology. The synthesis of furan-2,5-dicarboxylic acid via catalytic oxidation of 5-hydroxymethyl furfural is an important step for the production of bio-sourced polymers. We report on the activity of SiO2-supported Au catalysts for this reaction. These catalysts reached 74% furan-2,5-dicarboxylic acid yield at 90 °C in 5 h when 5-hydroxymethyl furfural to Au molar ratio was 72. We also investigated the influence of the morphologies of the silica supports on the growth of Au nanoparticles under reaction conditions. Pronounced growth of Au nanoparticles occurred on Aerosil, SiO2 with a disordered porosity and 50 nm average pore diameter: Au nanoparticles grew from 2.4 to 10.1 nm. However, by using ordered mesoporous supports, the growth of the gold nanoparticles was successfully minimized. Also the reaction conditions influenced the particle growth; for instance using HCO3− as a base led to more pronounced particle growth than using NaOH. Particle diffusion in solution, and subsequent coalescence and agglomeration was proposed to be the dominant particle growth mechanism. Our results show the importance of support morphology in mitigation of Au particle growth in liquid phase oxidation reactions.</description><identifier>ISSN: 0926-860X</identifier><identifier>EISSN: 1873-3875</identifier><identifier>DOI: 10.1016/j.apcata.2018.05.027</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Catalysis ; Catalysts ; Chemical synthesis ; Coalescing ; Gold ; Gold catalysis ; Hydroxymethylfurfural ; Liquid phase oxidation ; Morphology ; Nanoparticles ; Oxidation ; Particle diffusion ; Particle growth ; Particle size ; Porosity ; Selective oxidation ; Silicon dioxide ; Sodium hydroxide ; Support morphology</subject><ispartof>Applied catalysis. A, General, 2018-07, Vol.561, p.150-157</ispartof><rights>2018 The Author(s)</rights><rights>Copyright Elsevier Science SA Jul 5, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-c473582f9c99379f940aaf4c10fd044ebc383ddf1c4851c68cef77cdf028da733</citedby><cites>FETCH-LOGICAL-c417t-c473582f9c99379f940aaf4c10fd044ebc383ddf1c4851c68cef77cdf028da733</cites><orcidid>0000-0002-2216-2620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926860X18302552$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Masoud, Nazila</creatorcontrib><creatorcontrib>Donoeva, Baira</creatorcontrib><creatorcontrib>de Jongh, Petra E.</creatorcontrib><title>Stability of gold nanocatalysts supported on mesoporous silica for the oxidation of 5-hydroxymethyl furfural to furan-2,5-dicarboxylic acid</title><title>Applied catalysis. A, General</title><description>[Display omitted] •The reaction conditions affect the Au particle growth in liquid phase oxidation.•Particle diffusion followed by coalescence is proposed as dominant growth mechanism.•Au particle growth is mitigated by carefully selecting the silica support morphology. The synthesis of furan-2,5-dicarboxylic acid via catalytic oxidation of 5-hydroxymethyl furfural is an important step for the production of bio-sourced polymers. We report on the activity of SiO2-supported Au catalysts for this reaction. These catalysts reached 74% furan-2,5-dicarboxylic acid yield at 90 °C in 5 h when 5-hydroxymethyl furfural to Au molar ratio was 72. We also investigated the influence of the morphologies of the silica supports on the growth of Au nanoparticles under reaction conditions. Pronounced growth of Au nanoparticles occurred on Aerosil, SiO2 with a disordered porosity and 50 nm average pore diameter: Au nanoparticles grew from 2.4 to 10.1 nm. However, by using ordered mesoporous supports, the growth of the gold nanoparticles was successfully minimized. Also the reaction conditions influenced the particle growth; for instance using HCO3− as a base led to more pronounced particle growth than using NaOH. Particle diffusion in solution, and subsequent coalescence and agglomeration was proposed to be the dominant particle growth mechanism. Our results show the importance of support morphology in mitigation of Au particle growth in liquid phase oxidation reactions.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Coalescing</subject><subject>Gold</subject><subject>Gold catalysis</subject><subject>Hydroxymethylfurfural</subject><subject>Liquid phase oxidation</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Particle diffusion</subject><subject>Particle growth</subject><subject>Particle size</subject><subject>Porosity</subject><subject>Selective oxidation</subject><subject>Silicon dioxide</subject><subject>Sodium hydroxide</subject><subject>Support morphology</subject><issn>0926-860X</issn><issn>1873-3875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1q3DAUhUVJoZNp36ALQbexcyXbI2lTCEPSBgaySAvdCY1-Oho8livJYfwMfelocNaBi-6VOOe76CD0lUBNgGxuj7UatcqqpkB4DV0NlH1AK8JZUzWcdVdoBYJuKr6BP5_QdUpHAKCt6Fbo_3NWe9_7POPg8N_QGzyoIVxo_ZxywmkaxxCzNTgM-GRTKLcwlfdi0gq7EHE-WBzO3qjsi6ZguuowmxjO88nmw9xjN8VSqsc5XGY1VPSmq0zxx31RFRBW2pvP6KNTfbJf3voa_X64_7X9We2efjxu73aVbgnL5WRNx6kTWoiGCSdaUMq1moAz0LZ2rxveGOOIbnlH9IZr6xjTxgHlRrGmWaNvC3eM4d9kU5bHMMWhrJQUuCACKEBRtYtKx5BStE6O0Z9UnCUBeYldHuUSu7zELqGTJfZi-77YbPnBi7dRJu3toK3x0eosTfDvA14ByrOQtA</recordid><startdate>20180705</startdate><enddate>20180705</enddate><creator>Masoud, Nazila</creator><creator>Donoeva, Baira</creator><creator>de Jongh, Petra E.</creator><general>Elsevier B.V</general><general>Elsevier Science SA</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2216-2620</orcidid></search><sort><creationdate>20180705</creationdate><title>Stability of gold nanocatalysts supported on mesoporous silica for the oxidation of 5-hydroxymethyl furfural to furan-2,5-dicarboxylic acid</title><author>Masoud, Nazila ; Donoeva, Baira ; de Jongh, Petra E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-c473582f9c99379f940aaf4c10fd044ebc383ddf1c4851c68cef77cdf028da733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Coalescing</topic><topic>Gold</topic><topic>Gold catalysis</topic><topic>Hydroxymethylfurfural</topic><topic>Liquid phase oxidation</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Particle diffusion</topic><topic>Particle growth</topic><topic>Particle size</topic><topic>Porosity</topic><topic>Selective oxidation</topic><topic>Silicon dioxide</topic><topic>Sodium hydroxide</topic><topic>Support morphology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masoud, Nazila</creatorcontrib><creatorcontrib>Donoeva, Baira</creatorcontrib><creatorcontrib>de Jongh, Petra E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied catalysis. A, General</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masoud, Nazila</au><au>Donoeva, Baira</au><au>de Jongh, Petra E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of gold nanocatalysts supported on mesoporous silica for the oxidation of 5-hydroxymethyl furfural to furan-2,5-dicarboxylic acid</atitle><jtitle>Applied catalysis. A, General</jtitle><date>2018-07-05</date><risdate>2018</risdate><volume>561</volume><spage>150</spage><epage>157</epage><pages>150-157</pages><issn>0926-860X</issn><eissn>1873-3875</eissn><abstract>[Display omitted] •The reaction conditions affect the Au particle growth in liquid phase oxidation.•Particle diffusion followed by coalescence is proposed as dominant growth mechanism.•Au particle growth is mitigated by carefully selecting the silica support morphology. The synthesis of furan-2,5-dicarboxylic acid via catalytic oxidation of 5-hydroxymethyl furfural is an important step for the production of bio-sourced polymers. We report on the activity of SiO2-supported Au catalysts for this reaction. These catalysts reached 74% furan-2,5-dicarboxylic acid yield at 90 °C in 5 h when 5-hydroxymethyl furfural to Au molar ratio was 72. We also investigated the influence of the morphologies of the silica supports on the growth of Au nanoparticles under reaction conditions. Pronounced growth of Au nanoparticles occurred on Aerosil, SiO2 with a disordered porosity and 50 nm average pore diameter: Au nanoparticles grew from 2.4 to 10.1 nm. However, by using ordered mesoporous supports, the growth of the gold nanoparticles was successfully minimized. Also the reaction conditions influenced the particle growth; for instance using HCO3− as a base led to more pronounced particle growth than using NaOH. Particle diffusion in solution, and subsequent coalescence and agglomeration was proposed to be the dominant particle growth mechanism. Our results show the importance of support morphology in mitigation of Au particle growth in liquid phase oxidation reactions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcata.2018.05.027</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2216-2620</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-860X
ispartof Applied catalysis. A, General, 2018-07, Vol.561, p.150-157
issn 0926-860X
1873-3875
language eng
recordid cdi_proquest_journals_2089190200
source Elsevier ScienceDirect Journals
subjects Catalysis
Catalysts
Chemical synthesis
Coalescing
Gold
Gold catalysis
Hydroxymethylfurfural
Liquid phase oxidation
Morphology
Nanoparticles
Oxidation
Particle diffusion
Particle growth
Particle size
Porosity
Selective oxidation
Silicon dioxide
Sodium hydroxide
Support morphology
title Stability of gold nanocatalysts supported on mesoporous silica for the oxidation of 5-hydroxymethyl furfural to furan-2,5-dicarboxylic acid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20gold%20nanocatalysts%20supported%20on%20mesoporous%20silica%20for%20the%20oxidation%20of%205-hydroxymethyl%20furfural%20to%20furan-2,5-dicarboxylic%20acid&rft.jtitle=Applied%20catalysis.%20A,%20General&rft.au=Masoud,%20Nazila&rft.date=2018-07-05&rft.volume=561&rft.spage=150&rft.epage=157&rft.pages=150-157&rft.issn=0926-860X&rft.eissn=1873-3875&rft_id=info:doi/10.1016/j.apcata.2018.05.027&rft_dat=%3Cproquest_cross%3E2089190200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089190200&rft_id=info:pmid/&rft_els_id=S0926860X18302552&rfr_iscdi=true