WO3 Quantum Dots Decorated GO/Mg‐doped ZnO Composites for Enhanced Photocatalytic Activity under Nature Sunlight

Graphene oxide/Mg‐doped ZnO/tungsten oxide quantum dots composites (WQGOMZ) were prepared through co‐precipitation method, and were studied by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), Fluorescence spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied organometallic chemistry 2018-09, Vol.32 (9), p.n/a
Hauptverfasser: Zhao, Huiyang, Fang, Qun, Chen, Chuansheng, Chao, Zisheng, Tsang, Yuenhong, Wu, Yiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Applied organometallic chemistry
container_volume 32
creator Zhao, Huiyang
Fang, Qun
Chen, Chuansheng
Chao, Zisheng
Tsang, Yuenhong
Wu, Yiyong
description Graphene oxide/Mg‐doped ZnO/tungsten oxide quantum dots composites (WQGOMZ) were prepared through co‐precipitation method, and were studied by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), Fluorescence spectra (FL), and UV–vis diffuse reflection spectra. Furthermore, the photocatalytic activity of resultant WQGOMZ was evaluated under nature sunlight. Experimental results showed that WO3QDs can remarkably heighten the photocatalytic activity of GOMZ composite, in which is nearly 6.58 times higher than that of GOMZ composite. Simultaneously, WQGOMZ composites possess optical memory ability and maintain high photocatalytic stability for more than 40 days. The enhanced photocatalytic activity and optical memory ability are attributed to the effective synergistic effect between ZnO and WO3QDs. Graphene can facilitate the separation of photogenerated electron‐holes pairs. Under light illumination, the photogenerated electrons are transfered to WO3 QDs conduction band, and are stored in WO3 QDs crystal, producing the structure of ·WO3–. In the dark, the structure of ·WO3– can release the stored photogenerated electrons, and transfer to the crystal structure of WO3, keeping the photocatalytic activity in the dark. Hence, WO3 QDs improve the photocatalytic activity of GOMZ composite significantly, and endow the optical memory ability.
doi_str_mv 10.1002/aoc.4449
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2089149819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089149819</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2589-f8073476cb22b88b0e55031e918f479649acbdffe3b89ba73031734b390ad7c73</originalsourceid><addsrcrecordid>eNotkNFKwzAUhoMoOKfgIwS87pY0aZtcjm5OYVpFRfAmpGm6dXRNTdNJ73wEn9EnMWNe_Rz-_5zz8wFwjdEEIxROpVETSik_ASOMOA9QQvgpGKEwZkEYo-gcXHTdFiHEY0xHwL5nBD73snH9Ds6N6-BcK2Ol0wVcZtOH9e_3T2FaP300GUzNrjVd5XQHS2PhotnIRnnvaWOcUdLJenCVgjPlqn3lBtg3hbbwUbreavjSN3W13rhLcFbKutNX_zoGb7eL1_QuWGXL-3S2CtZhxHhQMl-dJrHKwzBnLEc6ihDBmmNW0oTHlEuVF2WpSc54LhPiTb-QE45kkaiEjMHN8W5rzWevOye2preNfylCxDimnGHuU8Ex9VXVehCtrXbSDgIjccApPE5xwClmWXpQ8gcBlGpo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089149819</pqid></control><display><type>article</type><title>WO3 Quantum Dots Decorated GO/Mg‐doped ZnO Composites for Enhanced Photocatalytic Activity under Nature Sunlight</title><source>Wiley Journals</source><creator>Zhao, Huiyang ; Fang, Qun ; Chen, Chuansheng ; Chao, Zisheng ; Tsang, Yuenhong ; Wu, Yiyong</creator><creatorcontrib>Zhao, Huiyang ; Fang, Qun ; Chen, Chuansheng ; Chao, Zisheng ; Tsang, Yuenhong ; Wu, Yiyong</creatorcontrib><description>Graphene oxide/Mg‐doped ZnO/tungsten oxide quantum dots composites (WQGOMZ) were prepared through co‐precipitation method, and were studied by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), Fluorescence spectra (FL), and UV–vis diffuse reflection spectra. Furthermore, the photocatalytic activity of resultant WQGOMZ was evaluated under nature sunlight. Experimental results showed that WO3QDs can remarkably heighten the photocatalytic activity of GOMZ composite, in which is nearly 6.58 times higher than that of GOMZ composite. Simultaneously, WQGOMZ composites possess optical memory ability and maintain high photocatalytic stability for more than 40 days. The enhanced photocatalytic activity and optical memory ability are attributed to the effective synergistic effect between ZnO and WO3QDs. Graphene can facilitate the separation of photogenerated electron‐holes pairs. Under light illumination, the photogenerated electrons are transfered to WO3 QDs conduction band, and are stored in WO3 QDs crystal, producing the structure of ·WO3–. In the dark, the structure of ·WO3– can release the stored photogenerated electrons, and transfer to the crystal structure of WO3, keeping the photocatalytic activity in the dark. Hence, WO3 QDs improve the photocatalytic activity of GOMZ composite significantly, and endow the optical memory ability.</description><identifier>ISSN: 0268-2605</identifier><identifier>EISSN: 1099-0739</identifier><identifier>DOI: 10.1002/aoc.4449</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Catalytic activity ; Chemistry ; Composite materials ; doped zinc oxide ; energy storage ; Fluorescence ; graphene oxide ; Optical memory (data storage) ; Photocatalysis ; Quantum dots ; Scanning electron microscopy ; Spectrum analysis ; Sunlight ; Synergistic effect ; Transmission electron microscopy ; Tungsten ; tungsten oxide ; X ray photoelectron spectroscopy ; X-ray diffraction ; Zinc oxide</subject><ispartof>Applied organometallic chemistry, 2018-09, Vol.32 (9), p.n/a</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9995-1177 ; 0000-0001-7906-0222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faoc.4449$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faoc.4449$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhao, Huiyang</creatorcontrib><creatorcontrib>Fang, Qun</creatorcontrib><creatorcontrib>Chen, Chuansheng</creatorcontrib><creatorcontrib>Chao, Zisheng</creatorcontrib><creatorcontrib>Tsang, Yuenhong</creatorcontrib><creatorcontrib>Wu, Yiyong</creatorcontrib><title>WO3 Quantum Dots Decorated GO/Mg‐doped ZnO Composites for Enhanced Photocatalytic Activity under Nature Sunlight</title><title>Applied organometallic chemistry</title><description>Graphene oxide/Mg‐doped ZnO/tungsten oxide quantum dots composites (WQGOMZ) were prepared through co‐precipitation method, and were studied by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), Fluorescence spectra (FL), and UV–vis diffuse reflection spectra. Furthermore, the photocatalytic activity of resultant WQGOMZ was evaluated under nature sunlight. Experimental results showed that WO3QDs can remarkably heighten the photocatalytic activity of GOMZ composite, in which is nearly 6.58 times higher than that of GOMZ composite. Simultaneously, WQGOMZ composites possess optical memory ability and maintain high photocatalytic stability for more than 40 days. The enhanced photocatalytic activity and optical memory ability are attributed to the effective synergistic effect between ZnO and WO3QDs. Graphene can facilitate the separation of photogenerated electron‐holes pairs. Under light illumination, the photogenerated electrons are transfered to WO3 QDs conduction band, and are stored in WO3 QDs crystal, producing the structure of ·WO3–. In the dark, the structure of ·WO3– can release the stored photogenerated electrons, and transfer to the crystal structure of WO3, keeping the photocatalytic activity in the dark. Hence, WO3 QDs improve the photocatalytic activity of GOMZ composite significantly, and endow the optical memory ability.</description><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Composite materials</subject><subject>doped zinc oxide</subject><subject>energy storage</subject><subject>Fluorescence</subject><subject>graphene oxide</subject><subject>Optical memory (data storage)</subject><subject>Photocatalysis</subject><subject>Quantum dots</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Sunlight</subject><subject>Synergistic effect</subject><subject>Transmission electron microscopy</subject><subject>Tungsten</subject><subject>tungsten oxide</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><subject>Zinc oxide</subject><issn>0268-2605</issn><issn>1099-0739</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkNFKwzAUhoMoOKfgIwS87pY0aZtcjm5OYVpFRfAmpGm6dXRNTdNJ73wEn9EnMWNe_Rz-_5zz8wFwjdEEIxROpVETSik_ASOMOA9QQvgpGKEwZkEYo-gcXHTdFiHEY0xHwL5nBD73snH9Ds6N6-BcK2Ol0wVcZtOH9e_3T2FaP300GUzNrjVd5XQHS2PhotnIRnnvaWOcUdLJenCVgjPlqn3lBtg3hbbwUbreavjSN3W13rhLcFbKutNX_zoGb7eL1_QuWGXL-3S2CtZhxHhQMl-dJrHKwzBnLEc6ihDBmmNW0oTHlEuVF2WpSc54LhPiTb-QE45kkaiEjMHN8W5rzWevOye2preNfylCxDimnGHuU8Ex9VXVehCtrXbSDgIjccApPE5xwClmWXpQ8gcBlGpo</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Zhao, Huiyang</creator><creator>Fang, Qun</creator><creator>Chen, Chuansheng</creator><creator>Chao, Zisheng</creator><creator>Tsang, Yuenhong</creator><creator>Wu, Yiyong</creator><general>Wiley Subscription Services, Inc</general><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9995-1177</orcidid><orcidid>https://orcid.org/0000-0001-7906-0222</orcidid></search><sort><creationdate>201809</creationdate><title>WO3 Quantum Dots Decorated GO/Mg‐doped ZnO Composites for Enhanced Photocatalytic Activity under Nature Sunlight</title><author>Zhao, Huiyang ; Fang, Qun ; Chen, Chuansheng ; Chao, Zisheng ; Tsang, Yuenhong ; Wu, Yiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2589-f8073476cb22b88b0e55031e918f479649acbdffe3b89ba73031734b390ad7c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Composite materials</topic><topic>doped zinc oxide</topic><topic>energy storage</topic><topic>Fluorescence</topic><topic>graphene oxide</topic><topic>Optical memory (data storage)</topic><topic>Photocatalysis</topic><topic>Quantum dots</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Sunlight</topic><topic>Synergistic effect</topic><topic>Transmission electron microscopy</topic><topic>Tungsten</topic><topic>tungsten oxide</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Huiyang</creatorcontrib><creatorcontrib>Fang, Qun</creatorcontrib><creatorcontrib>Chen, Chuansheng</creatorcontrib><creatorcontrib>Chao, Zisheng</creatorcontrib><creatorcontrib>Tsang, Yuenhong</creatorcontrib><creatorcontrib>Wu, Yiyong</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied organometallic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Huiyang</au><au>Fang, Qun</au><au>Chen, Chuansheng</au><au>Chao, Zisheng</au><au>Tsang, Yuenhong</au><au>Wu, Yiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WO3 Quantum Dots Decorated GO/Mg‐doped ZnO Composites for Enhanced Photocatalytic Activity under Nature Sunlight</atitle><jtitle>Applied organometallic chemistry</jtitle><date>2018-09</date><risdate>2018</risdate><volume>32</volume><issue>9</issue><epage>n/a</epage><issn>0268-2605</issn><eissn>1099-0739</eissn><abstract>Graphene oxide/Mg‐doped ZnO/tungsten oxide quantum dots composites (WQGOMZ) were prepared through co‐precipitation method, and were studied by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), Fluorescence spectra (FL), and UV–vis diffuse reflection spectra. Furthermore, the photocatalytic activity of resultant WQGOMZ was evaluated under nature sunlight. Experimental results showed that WO3QDs can remarkably heighten the photocatalytic activity of GOMZ composite, in which is nearly 6.58 times higher than that of GOMZ composite. Simultaneously, WQGOMZ composites possess optical memory ability and maintain high photocatalytic stability for more than 40 days. The enhanced photocatalytic activity and optical memory ability are attributed to the effective synergistic effect between ZnO and WO3QDs. Graphene can facilitate the separation of photogenerated electron‐holes pairs. Under light illumination, the photogenerated electrons are transfered to WO3 QDs conduction band, and are stored in WO3 QDs crystal, producing the structure of ·WO3–. In the dark, the structure of ·WO3– can release the stored photogenerated electrons, and transfer to the crystal structure of WO3, keeping the photocatalytic activity in the dark. Hence, WO3 QDs improve the photocatalytic activity of GOMZ composite significantly, and endow the optical memory ability.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aoc.4449</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9995-1177</orcidid><orcidid>https://orcid.org/0000-0001-7906-0222</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-2605
ispartof Applied organometallic chemistry, 2018-09, Vol.32 (9), p.n/a
issn 0268-2605
1099-0739
language eng
recordid cdi_proquest_journals_2089149819
source Wiley Journals
subjects Catalytic activity
Chemistry
Composite materials
doped zinc oxide
energy storage
Fluorescence
graphene oxide
Optical memory (data storage)
Photocatalysis
Quantum dots
Scanning electron microscopy
Spectrum analysis
Sunlight
Synergistic effect
Transmission electron microscopy
Tungsten
tungsten oxide
X ray photoelectron spectroscopy
X-ray diffraction
Zinc oxide
title WO3 Quantum Dots Decorated GO/Mg‐doped ZnO Composites for Enhanced Photocatalytic Activity under Nature Sunlight
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WO3%20Quantum%20Dots%20Decorated%20GO/Mg%E2%80%90doped%20ZnO%20Composites%20for%20Enhanced%20Photocatalytic%20Activity%20under%20Nature%20Sunlight&rft.jtitle=Applied%20organometallic%20chemistry&rft.au=Zhao,%20Huiyang&rft.date=2018-09&rft.volume=32&rft.issue=9&rft.epage=n/a&rft.issn=0268-2605&rft.eissn=1099-0739&rft_id=info:doi/10.1002/aoc.4449&rft_dat=%3Cproquest_wiley%3E2089149819%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089149819&rft_id=info:pmid/&rfr_iscdi=true