The Periodic Standing-Wave Approximation: Overview and Three Dimensional Scalar Models

The periodic standing-wave method for binary inspiral computes the exact numerical solution for periodic binary motion with standing gravitational waves, and uses it as an approximation to slow binary inspiral with outgoing waves. Important features of this method presented here are: (i) the mathema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2004-05
Hauptverfasser: Andrade, Zeferino, Beetle, Christopher, Blinov, Alexey, Bromley, Benjamin, Burko, Lior M, Cranor, Maria, Owen, Robert, Price, Richard H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Andrade, Zeferino
Beetle, Christopher
Blinov, Alexey
Bromley, Benjamin
Burko, Lior M
Cranor, Maria
Owen, Robert
Price, Richard H
description The periodic standing-wave method for binary inspiral computes the exact numerical solution for periodic binary motion with standing gravitational waves, and uses it as an approximation to slow binary inspiral with outgoing waves. Important features of this method presented here are: (i) the mathematical nature of the ``mixed'' partial differential equations to be solved, (ii) the meaning of standing waves in the method, (iii) computational difficulties, and (iv) the ``effective linearity'' that ultimately justifies the approximation. The method is applied to three dimensional nonlinear scalar model problems, and the numerical results are used to demonstrate extraction of the outgoing solution from the standing-wave solution, and the role of effective linearity.
doi_str_mv 10.48550/arxiv.0310001
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2089026029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089026029</sourcerecordid><originalsourceid>FETCH-proquest_journals_20890260293</originalsourceid><addsrcrecordid>eNqNjj0LwjAYhIMgWNTV-QXnappYrW7iBy6i0KJjCe2rjcREk1r9-WbwBzgd3D13HCGDiI4mSRzTsbAf2YwojyilUYsEjPMoTCaMdUjfuZt32XTG4pgH5JRVCEe00pSygLQWupT6Gp5Fg7B8PKz5yLuopdELODRoG4lv8AxklUWEtbyjdj4VCtJCKGFhb0pUrkfaF6Ec9n_aJcPtJlvtQr_4fKGr85t5WV9zOaPJ3P-hbM7_o76mt0Zq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089026029</pqid></control><display><type>article</type><title>The Periodic Standing-Wave Approximation: Overview and Three Dimensional Scalar Models</title><source>Free E- Journals</source><creator>Andrade, Zeferino ; Beetle, Christopher ; Blinov, Alexey ; Bromley, Benjamin ; Burko, Lior M ; Cranor, Maria ; Owen, Robert ; Price, Richard H</creator><creatorcontrib>Andrade, Zeferino ; Beetle, Christopher ; Blinov, Alexey ; Bromley, Benjamin ; Burko, Lior M ; Cranor, Maria ; Owen, Robert ; Price, Richard H</creatorcontrib><description>The periodic standing-wave method for binary inspiral computes the exact numerical solution for periodic binary motion with standing gravitational waves, and uses it as an approximation to slow binary inspiral with outgoing waves. Important features of this method presented here are: (i) the mathematical nature of the ``mixed'' partial differential equations to be solved, (ii) the meaning of standing waves in the method, (iii) computational difficulties, and (iv) the ``effective linearity'' that ultimately justifies the approximation. The method is applied to three dimensional nonlinear scalar model problems, and the numerical results are used to demonstrate extraction of the outgoing solution from the standing-wave solution, and the role of effective linearity.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0310001</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Gravitational waves ; Linearity ; Mathematical analysis ; Mathematical models ; Partial differential equations ; Standing waves ; Three dimensional models</subject><ispartof>arXiv.org, 2004-05</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/gr-qc/0310001.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Andrade, Zeferino</creatorcontrib><creatorcontrib>Beetle, Christopher</creatorcontrib><creatorcontrib>Blinov, Alexey</creatorcontrib><creatorcontrib>Bromley, Benjamin</creatorcontrib><creatorcontrib>Burko, Lior M</creatorcontrib><creatorcontrib>Cranor, Maria</creatorcontrib><creatorcontrib>Owen, Robert</creatorcontrib><creatorcontrib>Price, Richard H</creatorcontrib><title>The Periodic Standing-Wave Approximation: Overview and Three Dimensional Scalar Models</title><title>arXiv.org</title><description>The periodic standing-wave method for binary inspiral computes the exact numerical solution for periodic binary motion with standing gravitational waves, and uses it as an approximation to slow binary inspiral with outgoing waves. Important features of this method presented here are: (i) the mathematical nature of the ``mixed'' partial differential equations to be solved, (ii) the meaning of standing waves in the method, (iii) computational difficulties, and (iv) the ``effective linearity'' that ultimately justifies the approximation. The method is applied to three dimensional nonlinear scalar model problems, and the numerical results are used to demonstrate extraction of the outgoing solution from the standing-wave solution, and the role of effective linearity.</description><subject>Approximation</subject><subject>Gravitational waves</subject><subject>Linearity</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Partial differential equations</subject><subject>Standing waves</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjj0LwjAYhIMgWNTV-QXnappYrW7iBy6i0KJjCe2rjcREk1r9-WbwBzgd3D13HCGDiI4mSRzTsbAf2YwojyilUYsEjPMoTCaMdUjfuZt32XTG4pgH5JRVCEe00pSygLQWupT6Gp5Fg7B8PKz5yLuopdELODRoG4lv8AxklUWEtbyjdj4VCtJCKGFhb0pUrkfaF6Ec9n_aJcPtJlvtQr_4fKGr85t5WV9zOaPJ3P-hbM7_o76mt0Zq</recordid><startdate>20040508</startdate><enddate>20040508</enddate><creator>Andrade, Zeferino</creator><creator>Beetle, Christopher</creator><creator>Blinov, Alexey</creator><creator>Bromley, Benjamin</creator><creator>Burko, Lior M</creator><creator>Cranor, Maria</creator><creator>Owen, Robert</creator><creator>Price, Richard H</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20040508</creationdate><title>The Periodic Standing-Wave Approximation: Overview and Three Dimensional Scalar Models</title><author>Andrade, Zeferino ; Beetle, Christopher ; Blinov, Alexey ; Bromley, Benjamin ; Burko, Lior M ; Cranor, Maria ; Owen, Robert ; Price, Richard H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20890260293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Approximation</topic><topic>Gravitational waves</topic><topic>Linearity</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Partial differential equations</topic><topic>Standing waves</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Andrade, Zeferino</creatorcontrib><creatorcontrib>Beetle, Christopher</creatorcontrib><creatorcontrib>Blinov, Alexey</creatorcontrib><creatorcontrib>Bromley, Benjamin</creatorcontrib><creatorcontrib>Burko, Lior M</creatorcontrib><creatorcontrib>Cranor, Maria</creatorcontrib><creatorcontrib>Owen, Robert</creatorcontrib><creatorcontrib>Price, Richard H</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrade, Zeferino</au><au>Beetle, Christopher</au><au>Blinov, Alexey</au><au>Bromley, Benjamin</au><au>Burko, Lior M</au><au>Cranor, Maria</au><au>Owen, Robert</au><au>Price, Richard H</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Periodic Standing-Wave Approximation: Overview and Three Dimensional Scalar Models</atitle><jtitle>arXiv.org</jtitle><date>2004-05-08</date><risdate>2004</risdate><eissn>2331-8422</eissn><abstract>The periodic standing-wave method for binary inspiral computes the exact numerical solution for periodic binary motion with standing gravitational waves, and uses it as an approximation to slow binary inspiral with outgoing waves. Important features of this method presented here are: (i) the mathematical nature of the ``mixed'' partial differential equations to be solved, (ii) the meaning of standing waves in the method, (iii) computational difficulties, and (iv) the ``effective linearity'' that ultimately justifies the approximation. The method is applied to three dimensional nonlinear scalar model problems, and the numerical results are used to demonstrate extraction of the outgoing solution from the standing-wave solution, and the role of effective linearity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0310001</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2004-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2089026029
source Free E- Journals
subjects Approximation
Gravitational waves
Linearity
Mathematical analysis
Mathematical models
Partial differential equations
Standing waves
Three dimensional models
title The Periodic Standing-Wave Approximation: Overview and Three Dimensional Scalar Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Periodic%20Standing-Wave%20Approximation:%20Overview%20and%20Three%20Dimensional%20Scalar%20Models&rft.jtitle=arXiv.org&rft.au=Andrade,%20Zeferino&rft.date=2004-05-08&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0310001&rft_dat=%3Cproquest%3E2089026029%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089026029&rft_id=info:pmid/&rfr_iscdi=true