The Periodic Standing-Wave Approximation: Overview and Three Dimensional Scalar Models
The periodic standing-wave method for binary inspiral computes the exact numerical solution for periodic binary motion with standing gravitational waves, and uses it as an approximation to slow binary inspiral with outgoing waves. Important features of this method presented here are: (i) the mathema...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2004-05 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Andrade, Zeferino Beetle, Christopher Blinov, Alexey Bromley, Benjamin Burko, Lior M Cranor, Maria Owen, Robert Price, Richard H |
description | The periodic standing-wave method for binary inspiral computes the exact numerical solution for periodic binary motion with standing gravitational waves, and uses it as an approximation to slow binary inspiral with outgoing waves. Important features of this method presented here are: (i) the mathematical nature of the ``mixed'' partial differential equations to be solved, (ii) the meaning of standing waves in the method, (iii) computational difficulties, and (iv) the ``effective linearity'' that ultimately justifies the approximation. The method is applied to three dimensional nonlinear scalar model problems, and the numerical results are used to demonstrate extraction of the outgoing solution from the standing-wave solution, and the role of effective linearity. |
doi_str_mv | 10.48550/arxiv.0310001 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2089026029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089026029</sourcerecordid><originalsourceid>FETCH-proquest_journals_20890260293</originalsourceid><addsrcrecordid>eNqNjj0LwjAYhIMgWNTV-QXnappYrW7iBy6i0KJjCe2rjcREk1r9-WbwBzgd3D13HCGDiI4mSRzTsbAf2YwojyilUYsEjPMoTCaMdUjfuZt32XTG4pgH5JRVCEe00pSygLQWupT6Gp5Fg7B8PKz5yLuopdELODRoG4lv8AxklUWEtbyjdj4VCtJCKGFhb0pUrkfaF6Ec9n_aJcPtJlvtQr_4fKGr85t5WV9zOaPJ3P-hbM7_o76mt0Zq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089026029</pqid></control><display><type>article</type><title>The Periodic Standing-Wave Approximation: Overview and Three Dimensional Scalar Models</title><source>Free E- Journals</source><creator>Andrade, Zeferino ; Beetle, Christopher ; Blinov, Alexey ; Bromley, Benjamin ; Burko, Lior M ; Cranor, Maria ; Owen, Robert ; Price, Richard H</creator><creatorcontrib>Andrade, Zeferino ; Beetle, Christopher ; Blinov, Alexey ; Bromley, Benjamin ; Burko, Lior M ; Cranor, Maria ; Owen, Robert ; Price, Richard H</creatorcontrib><description>The periodic standing-wave method for binary inspiral computes the exact numerical solution for periodic binary motion with standing gravitational waves, and uses it as an approximation to slow binary inspiral with outgoing waves. Important features of this method presented here are: (i) the mathematical nature of the ``mixed'' partial differential equations to be solved, (ii) the meaning of standing waves in the method, (iii) computational difficulties, and (iv) the ``effective linearity'' that ultimately justifies the approximation. The method is applied to three dimensional nonlinear scalar model problems, and the numerical results are used to demonstrate extraction of the outgoing solution from the standing-wave solution, and the role of effective linearity.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0310001</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Gravitational waves ; Linearity ; Mathematical analysis ; Mathematical models ; Partial differential equations ; Standing waves ; Three dimensional models</subject><ispartof>arXiv.org, 2004-05</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/gr-qc/0310001.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Andrade, Zeferino</creatorcontrib><creatorcontrib>Beetle, Christopher</creatorcontrib><creatorcontrib>Blinov, Alexey</creatorcontrib><creatorcontrib>Bromley, Benjamin</creatorcontrib><creatorcontrib>Burko, Lior M</creatorcontrib><creatorcontrib>Cranor, Maria</creatorcontrib><creatorcontrib>Owen, Robert</creatorcontrib><creatorcontrib>Price, Richard H</creatorcontrib><title>The Periodic Standing-Wave Approximation: Overview and Three Dimensional Scalar Models</title><title>arXiv.org</title><description>The periodic standing-wave method for binary inspiral computes the exact numerical solution for periodic binary motion with standing gravitational waves, and uses it as an approximation to slow binary inspiral with outgoing waves. Important features of this method presented here are: (i) the mathematical nature of the ``mixed'' partial differential equations to be solved, (ii) the meaning of standing waves in the method, (iii) computational difficulties, and (iv) the ``effective linearity'' that ultimately justifies the approximation. The method is applied to three dimensional nonlinear scalar model problems, and the numerical results are used to demonstrate extraction of the outgoing solution from the standing-wave solution, and the role of effective linearity.</description><subject>Approximation</subject><subject>Gravitational waves</subject><subject>Linearity</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Partial differential equations</subject><subject>Standing waves</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjj0LwjAYhIMgWNTV-QXnappYrW7iBy6i0KJjCe2rjcREk1r9-WbwBzgd3D13HCGDiI4mSRzTsbAf2YwojyilUYsEjPMoTCaMdUjfuZt32XTG4pgH5JRVCEe00pSygLQWupT6Gp5Fg7B8PKz5yLuopdELODRoG4lv8AxklUWEtbyjdj4VCtJCKGFhb0pUrkfaF6Ec9n_aJcPtJlvtQr_4fKGr85t5WV9zOaPJ3P-hbM7_o76mt0Zq</recordid><startdate>20040508</startdate><enddate>20040508</enddate><creator>Andrade, Zeferino</creator><creator>Beetle, Christopher</creator><creator>Blinov, Alexey</creator><creator>Bromley, Benjamin</creator><creator>Burko, Lior M</creator><creator>Cranor, Maria</creator><creator>Owen, Robert</creator><creator>Price, Richard H</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20040508</creationdate><title>The Periodic Standing-Wave Approximation: Overview and Three Dimensional Scalar Models</title><author>Andrade, Zeferino ; Beetle, Christopher ; Blinov, Alexey ; Bromley, Benjamin ; Burko, Lior M ; Cranor, Maria ; Owen, Robert ; Price, Richard H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20890260293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Approximation</topic><topic>Gravitational waves</topic><topic>Linearity</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Partial differential equations</topic><topic>Standing waves</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Andrade, Zeferino</creatorcontrib><creatorcontrib>Beetle, Christopher</creatorcontrib><creatorcontrib>Blinov, Alexey</creatorcontrib><creatorcontrib>Bromley, Benjamin</creatorcontrib><creatorcontrib>Burko, Lior M</creatorcontrib><creatorcontrib>Cranor, Maria</creatorcontrib><creatorcontrib>Owen, Robert</creatorcontrib><creatorcontrib>Price, Richard H</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrade, Zeferino</au><au>Beetle, Christopher</au><au>Blinov, Alexey</au><au>Bromley, Benjamin</au><au>Burko, Lior M</au><au>Cranor, Maria</au><au>Owen, Robert</au><au>Price, Richard H</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Periodic Standing-Wave Approximation: Overview and Three Dimensional Scalar Models</atitle><jtitle>arXiv.org</jtitle><date>2004-05-08</date><risdate>2004</risdate><eissn>2331-8422</eissn><abstract>The periodic standing-wave method for binary inspiral computes the exact numerical solution for periodic binary motion with standing gravitational waves, and uses it as an approximation to slow binary inspiral with outgoing waves. Important features of this method presented here are: (i) the mathematical nature of the ``mixed'' partial differential equations to be solved, (ii) the meaning of standing waves in the method, (iii) computational difficulties, and (iv) the ``effective linearity'' that ultimately justifies the approximation. The method is applied to three dimensional nonlinear scalar model problems, and the numerical results are used to demonstrate extraction of the outgoing solution from the standing-wave solution, and the role of effective linearity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0310001</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2004-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2089026029 |
source | Free E- Journals |
subjects | Approximation Gravitational waves Linearity Mathematical analysis Mathematical models Partial differential equations Standing waves Three dimensional models |
title | The Periodic Standing-Wave Approximation: Overview and Three Dimensional Scalar Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Periodic%20Standing-Wave%20Approximation:%20Overview%20and%20Three%20Dimensional%20Scalar%20Models&rft.jtitle=arXiv.org&rft.au=Andrade,%20Zeferino&rft.date=2004-05-08&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0310001&rft_dat=%3Cproquest%3E2089026029%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089026029&rft_id=info:pmid/&rfr_iscdi=true |